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Using the dynamical cluster approximation and quantum Monte Carlo simulations we calculate the
single-particle spectra of the Hubbard model with next-nearest neighbor hopping t0. In the underdoped
region, we find that the pseudogap along the zone diagonal in the electron doped systems is due to long-
range antiferromagnetic correlations. The physics in the proximity of (0, �) is dramatically influenced by
t0 and determined by the short range correlations. The effect of t0 on the low-energy angle-resolved
photoemission spectroscopy spectra is weak except close to the zone edge. The short range correlations
are sufficient to yield a pseudogap signal in the magnetic susceptibility and produce a concomitant gap in
the single-particle spectra near (�, �=2), but not necessarily at a location in the proximity of the Fermi
surface.
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Introduction.—In contrast to conventional superconduc-
tors, the normal state phase of high Tc superconductors at
low doping is not a Fermi liquid being characterized by
strong antiferromagnetic (AF) correlations and a depletion
of low-energy states detected by both one and two-particle
measurements [1]. Elucidating the physics in this region,
also called the pseudogap (PG) region, is crucial for devel-
oping a theory of high Tc superconductivity. Whereas the
d-wave superconducting phase appears to be universal in
the cuprates [2,3], the PG region displays different prop-
erties in the electron and hole-doped materials [4,5]. Thus,
understanding the PG region implies a better understand-
ing of the asymmetry and similarities between the electron
and the hole-doped materials.

Experimental data show that in the hole-doped cuprates
the antiferromagnetism is destroyed quickly upon doping
(persisting to �2% doping) [6] and the angle-resolved
photoemission spectra (ARPES) show well-defined quasi-
particles close to (�=2, �=2) in the Brillouin zone (BZ)
and gap states in the proximity of (0, �) [4,7,8]. In the
electron doped cuprates AF is more robust (persisting to
�15% doping) [9] and the ARPES at small doping
(�5%) shows sharp quasiparticles at the zone edge and
gap states elsewhere in the BZ [5,8]. In the Hubbard model,
or the closely related t-J model, which are believed to
describe well the low-energy physics of cuprates, the
electron-hole asymmetry can be captured by including a
finite next-nearest neighbor hopping t0 [10,11]. In this
Letter we employ a reliable technique, the dynamical
cluster approximation (DCA) [12,13], on relatively large
clusters, to investigate the single-particle and the two-
particle spin spectra at small doping, the asymmetry be-
tween electron and hole-doped systems, and the role of AF
correlations on the PG physics.

We find that in the hole-doped systems, the PG emerges
in the proximity of (0, �), requires only short range corre-
lations, and its magnitude and symmetry is strongly influ-
enced by t0. In the electron doped systems, the PG emerges

along the diagonal direction, as a direct consequence of AF
scattering and requires long-range AF correlations, but not
necessarily long-range order. The hopping t0 enhances the
AF correlations in the electron doped system and produces
this AF gap. With reduced temperatures, the short range
AF correlations suppress the low-energy spin excitations in
both electron and hole-doped systems concomitant with
the development of a single-particle gap in the proximity of
(�, �=2), but not necessarily with a PG close to the nodal
or the antinodal points.

While the single-particle spectra was previously ad-
dressed with cluster perturbation theory (CPT) [14], the
effect of AF correlations on the spin excitation spectra and
bulk spin susceptibility, as well as the relation between the
ARPES and the spin spectra were not addressed within the
recently developed cluster mean-field techniques. More-
over, our conclusions about the nature of the single-particle
PG in the electron doped systems are different from those
drawn within CPT. For U � W, CPT finds that, even when
only short range AF correlations are considered, the states
along the diagonal direction develop a gap, which persists
even at large dopings � 15%. In contrast, in the experi-
ment, at this doping value, the PG develops only at the
intersection of the AF zone boundary with the noninteract-
ing Fermi surfaces (hot spots) [15]. For agreement with
experiment the authors of Ref. [14] proposed two different
mechanisms for the PG in electron doped systems: a
strong-coupling (U � W) PG at small doping produced
by short range correlations and a weak-coupling (U <
W) PG valid at intermediate doping which requires long-
range AF correlations. In contrast, we find no PG along the
diagonal direction in the strong-coupling regime unless
long ranged AF correlations are considered. This implies
that in our calculation there is no need for two different PG
mechanisms in the electron doped systems. A plausible
reason for the discrepancy between DCA and CPT is that
the CPT overestimates gaps induced by AF correlations in
small clusters, since the CPT self-energy is that of an
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isolated finite size cluster [13,16,17]. In contrast, the DCA
neglects the effects of correlations beyond the cluster size
and hence generally underestimates gaps [13]. It is inter-
esting to note that the self-energy of a finite size cluster
with periodic boundary conditions contains the signature
of a PG [18]. Our DCA calculations, however, show that
the pseudogap disappears when the cluster is self-
consistently coupled to the host.

Formalism.—The Hubbard Hamiltonian is

 H � �t
X

hiji;�

cyi�cj� � t
0
X

hhilii;�

cyi�cl� �U
X

i

ni"ni#: (1)

Here c�y�i� destroys (creates) an electron with spin � on-site
i and ni� is the corresponding number operator. U is the
on-site repulsion taken U � W � 8t and t (t0) is the (next)
nearest-neighbors hopping. W is the electronic bandwidth.
We keep the filling n < 1 and take t0 � �0:3t (t0 � 0:3t)
[19] to represent the hole (electron) doped cuprates. We
present results for n � 0:95.

In the DCA [12] we map the original lattice model onto a
periodic cluster of size Nc � Lc � Lc embedded in a self-
consistent host. The correlations up to a range � & Lc are
treated accurately, while the physics on longer length
scales is described at the mean-field level. The reduction
to an effective cluster model is achieved by coarse graining
the Brillouin zone (BZ) into Nc cells (see Fig. 3 in
Ref. [13]) and approximating the self-energy as a constant
within each cell, ��k; !� � ��K; !�, where K denotes the
center of the cell which k belongs to.

We solve the cluster problem using quantum
Monte Carlo (QMC) simulations [16]. We use two differ-
ent 16 site cluster geometries [20,21], 16A and 16B (see
Fig. 5 in Ref. [13]), which result in different coarse grain-
ing of the BZ. Calculations on larger clusters below the PG
temperature and at large coupling (U � W) are not cur-
rently possible due to the QMC sign problem. The maxi-
mum entropy method [22] is employed to calculate the real
frequency cluster Green’s function from which the self-
energy is extracted. The self-energy is interpolated using a
smooth spline, and used to calculate the lattice spectrum
A�k;!�. We find results identical to within error bars at all
the common points of the coarse-grained BZ of the clus-
ters. The result demonstrates that these 16 site clusters
capture the momentum dependence of the self-energy
rather well. We checked the robustness of our results at
low temperature with calculations on smaller clusters
where the sign problem is less significant.

Results.—At a temperature TN � 0:19t (0:24t) for the
hole (electron) doped system the AF correlation length
reaches the cluster size yielding a divergent AF suscepti-
bility (not shown). Below TN one can proceed either by
imposing the full symmetry on the effective medium, i.e.,
by reducing the problem to a cluster embedded in a para-
magnetic (PM) host, or by allowing the host to develop
long-range AF order. Both the PM and the AF solutions are
complementary approximations to the exact solution: the

first cuts off the AF correlations larger than the cluster size
while the second introduces long-range AF order via the
mean-field character of the host.

Paramagnetic solution.—In Fig. 1(a) and 1(b) we show
the spectral intensity at zero energy for the hole and
electron doped systems, respectively. These plots are simi-
lar to the experimental ARPES data (see Fig. 8 in Ref. [4]
and Fig. 3 in Ref. [5]). In both experiment and in our
results, a region of large intensity can be observed close
to (�=2, �=2) and very low intensity is observed at the
zone edge for hole-doped systems. For the electron doped
systems the intensity is maximum at (0, �). However, the
experimental data for the electron doped materials show
gapped states along the diagonal direction [5]. In our
calculations, Fig. 1(b), the intensity at (�=2, �=2) is simi-
lar to the one observed for the hole-doped case and there is
no PG along the zone diagonal. In fact A�k;!� close to
(�=2, �=2) is very similar for the hole and electron doped
cases, as we will discuss below.

A comparison of the hole and electron spectra is pre-
sented in Fig. 2 and 3(a), where A�K;!� for K in the center
of the cells which divide the BZ [23] are shown. In
Figs. 2(a)–2(c) and 3(a), we find that the single-particle
spectra at low energy for the hole and the electron doped
cases are surprisingly similar apart from the features close
to (0, �). In Fig. 2(c) we observe a sharp peak at (�=2,
�=2) in both the hole and electron doped spectra. Thus,
there is no PG along the diagonal direction [24]. A par-
ticularly interesting feature, shown in Fig. 3(a), is the
depletion of the low-energy states with lowering T in the
proximity of (�, �=2). Unlike the noninteracting case,
where at (�, �=2), there is only spectral weight for !>
0, there is now a broad feature with substantial weight at
negative energies. This is due to AF scattering as can be
deduced by comparing the main features with the (�=2, 0)
spectrum [Fig. 2(a)] found at the mirroring position with
respect to AF zone boundary in the BZ. These shadow
states develop a gap with decreasing temperature as shown
in Fig. 3(a) where a large temperature spectrum (T �
0:22t, dotted line) and a low temperature one (T � 0:12t,
dashed line) are plotted for the electron doped case. In
literature the common description [25] of ARPES along
the ��; 0� � ��;�� cut is that the peak at (�; 0) and !< 0
characterizing the PG evolves into a broad feature which
loses intensity when approaching the zone corner. Our
results indicate that the broad feature and gap at (�,

FIG. 1 (color). 5% doping, T � 0:12t. Zero energy surface
A�k; 0� for (a) t0 � �0:3t and (b) t0 � 0:3t.
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�=2) are not conditioned by the (0,�) PG, being present in
both electron and hole-doped systems.

Differences between the hole and electron doped spectra
are illustrated in Figs. 2(d)–2(f). The high energy features
at zone center [Fig. 2(d)] and zone corner [Fig. 2(e)] are
strongly influenced by t0. It is interesting that the position
of these features seems to follow the noninteracting band
structure, the energy difference between the noninteracting
states at these points being about 8jt0j. A fundamental dif-
ference between the electron and hole-doped spectra at (0,
�) is shown in Fig. 2(f). The hole-doped spectra exhibits a
strong gap whereas the electron doped spectra has an in-
tense peak. It is also worth looking at the t0 �0 case, shown
in the figure with dotted line, where a PG is present but
much less developed than the one for t0 � �0:3t. Notice
that even for the hole-doped case (i.e., t0 < 0) the magni-
tude of t0 has a strong influence on symmetry with respect
to zero energy of the density of states, which we believe to
be important for interpreting tunneling experiments.

Aside from the depletion of DOS at the chemical poten-
tial, the PG is also associated with the suppression of the
low-energy spin excitation [26]. For both electron and
hole-doped cases we find that the static spin susceptibility
at q � �0; 0� is strongly suppressed at temperatures below
T� � 0:24t, see Fig. 4(a). The momentum dependence of
the dynamical spin susceptibility exhibits a dispersion
similar to magnon dispersion in the undoped antiferromag-
nets, with zero energy excitations at q � �0; 0� and q �
��;��, and gapped excitations at other q points in the BZ.
For instance in Fig. 3(b) we show the imaginary part of the
dynamical spin susceptibility, �00�q;!�=! at q � �0; �=2�.
In the electron doped case the position of the peak is found
at larger energy which can be interpreted as a larger
effective exchange interaction J and is consistent with
stronger AF. What is interesting is that the suppression of
the spin excitations and the formation of the remnant
magnon peaks in �00�q;!�=! is concomitant with the
development of the gap in the single-particle spectrum at

(�, �=2) [see Fig. 3(a)] and not necessarily imply a PG at
(0, �), observed only in the hole-doped case, or elsewhere
in the proximity of Fermi surface. However, the hole-
doped PG at (0, �) is also coincident with the appearance
of the remnant magnon peaks, indicating a short range AF
correlations origin.

The spin excitation spectra are qualitatively similar for
the electron and hole-doped cases, but with a stronger
suppression at low energy in the hole-doped case even
though the AF is weaker. The largest difference can be
observed at q � ��=2; �=2� where at T � 0:12t the hole-
doped spectra show a well developed gap whereas the
electron doped one just starts to form [see Fig. 3(c)].
This difference is a result of the corresponding differences
in the ARPES, as can be concluded from Fig. 3(d). Here the
random phase approximation (RPA) using the calculated
A�k;!� was employed for the calculation of the spin
susceptibility. In this approximation the hole-doped spin
susceptibility at (�=2, �=2) is gapped due to the gap at (0,
�) in the DOS which suppresses the excitations between
the antinodal and the nodal points, unlike the electron
doped susceptibility which is peaked at low-energy.

Antiferromagnetic solution.—In Fig. 4(b), we compare
A�k;!� for AF and PM cases. Here, a gap is obtained for
the AF electron doped case close to (�=2, �=2) in the BZ,
in agreement with the experimental findings [5]. This gap
is an AF gap and requires long-range AF correlations. The
short range AF correlations, of the order of a few lattice
constants, are not sufficient to produce it. However, it is
possible the PG to also appear in the PM state in large
enough clusters that allow for long-range AF correlations.
This conclusion is similar to the weak-coupling PG mecha-
nism predictions [14,27], even though in our case U � W.
The hopping t0 enhances the antiferromagnetism in the
electron doped systems, producing the gap. Presumably
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any other parameters which favor the antiferromagnetism
will have a similar effect. For example, the AF solution for
the hole-doped case produces a gap at (�=2, �=2) too,
though a little smaller due to weaker antiferromagnetism.
The spectral features away from (�=2, �=2) within the AF
solutions are not qualitatively different from the ones
obtained with the PM solution (not shown). We note that
the long-range AF order does not yield a gap at (0, �) for
the electron doped case even though this point is on the AF
zone boundary. The gap in DOS at (�, �=2) developed in
the PM solution is now enhanced by AF order, as well the
intensity of the shadow states.

We find that the inclusion in our calculation of a next-
next-nearest-neighbor hopping t00 � 0:2t [19] will not
change the conclusions, this term having a rather small
quantitative effect (though it may provide better agreement
with experimental data). With decreasing doping, T� in-
creases but the number of available low-energy unoccupied
states becomes smaller and therefore the PG features are
more difficult to be resolved. With increasing doping, T�

decreases and the PG weakens, its features being hardly
discernible above 15% doping. In the same time the !< 0
weight in the DOS at (�, �=2) is reduced, indicat-
ing weaker AF scattering with increasing doping. In the
AF solution the PG at larger doping will be located at the
‘‘hot spots’’, even though the physics at those points re-
quires fine k resolution and therefore is obtained from
interpolation.

Conclusions.—Using DCA we investigated the Hubbard
model with next-nearest neighbor hopping t0. We find that:
(1) The PG along the diagonal direction of the BZ in the
electron doped systems is an AF gap which requires long-
range AF correlations. (2) The DOS in the proximity of (0,
�) is determined by the short range AF correlations and it
is strongly influenced by t0. For the hole (electron) doped
systems t0 yields a gap (an intense peak) at the zone edge.
(3) Except in the proximity of (0, �) the influence of t0 on
the low-energy ARPES is very weak. (4) t0 has a strong
influence on the high energy ARPES close to zone center
and zone corner. (5) The magnitude of t0 in the hole-doped
systems influences strongly the symmetry of the PG around
the chemical potential. (6) The short range AF correlations
suppress the low-energy spin susceptibility, produce rem-

nant magnon peaks in the spin excitation spectra in both
electron and hole-doped systems and produce a gap in
ARPES around (�, �=2) but not necessarily in the prox-
imity of the Fermi surface. When a (0, �) PG is present in
the ARPES, it emerges at the same temperature as the
magnon peaks, suggesting a common origin of short
ranged AF order. (7) Even though the antiferromagnetism
is stronger in the electron doped case, the intense peak in
DOS at (0, �) hinders the suppression of low-energy spin
excitations.
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