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We present a general analytical theory that enables one to determine accurately the unknown tip-sample
interactions from the experimental measurement of the amplitude and phase of the oscillating tip in
amplitude-modulation atomic force microscopy (AM-AFM). We apply the method to the known Lennard-
Jones-type forces and find excellent agreement with the reconstructed results. AM-AFM, widely used in
air and liquid, is now not only an imaging tool but also a quantitative force measurement tool.
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Since its invention two decades ago [1], atomic force
microscopy (AFM) has been actively developed in several
operation modes as an important scanning probe technol-
ogy. The amplitude-modulation atomic force microscopy
(AM-AFM), usually referred to as the tapping-mode AFM,
is one of the most widely used modes of AFM operation.
With this versatile technique, solid-state surfaces [2,3] as
well as various biological samples [4–6] have been well
investigated due to its stable performance in air as well as
in liquid environment. Beyond the topographic imaging,
AM-AFM has also been used to form and manipulate the
nanometric water meniscus between the tip and the sub-
strate [7–9], which have been applied to the fabrication of
molecular nanostructures [10,11]. In particular, the elastic-
ity of the nanometric ‘‘water wire‘‘ thus produced was
measured [9], which was manifested by a very small
change of amplitude signal in AM-AFM. However, quan-
titative analysis could not be made because theoretical
tools to determine the tip-sample interactions in AM-
AFM have not been well established.

The dynamics of the AFM probe for given tip-sample
interactions has been successfully understood by analytical
and numerical methods, describing the bistable and hyste-
retic behavior of the tip in proximity to the surface
[6,12,13]. Nonetheless, there does not still exist a complete
understanding of the experimental measurements; for ex-
ample, the inverse problem of how to extract the tip-sample
interactions from the measured motion of the probe is not
solved yet, which is mainly due to the nonlinearity of the
motion. Although frequency-modulation AFM, another
dynamic mode of AFM, is theoretically well formulated
and is capable to measure the tip-sample interaction quan-
titatively [14,15], it always operates with a sizable modu-
lation amplitude kept constant even when the tip is closely
adjacent to the sample surface, which may cause strong
mechanical contact and damage. Therefore, AM-AFM
may be especially suitable for quantitative investigation
of nanoscale interactions once general and accurate theo-
retical tools are developed.

In this Letter, we present a rigorous derivation of the
general governing equations for the motion of the probe

under both conservative and dissipative forces in AM-
AFM operation. In particular, the characteristic differential
equations describing the interaction forces are obtained,
from which the unknown interactions between the tip and
sample can be unambiguously determined. We have ap-
plied the formalism to the simple Lennard-Jones-type
forces and found excellent agreement with the recon-
structed results for arbitrary oscillation amplitude.

AM-AFM is a dynamic force microscopy where the
probe tip is excited by an external driving force with
constant amplitude at a fixed frequency, usually near or
on the free resonance frequency. The oscillation amplitude
and the phase shift of the tip motion are the observable
quantities that reflect the tip-sample interactions. Let us
start with the harmonic oscillator equation which describes
the motion of the probe tip [6],

 m ��� b _�� k� � F cos!t� Fint; (1)

where m is the effective mass of the probe, b the damping
coefficient, k the spring constant, F the amplitude of the
driving force, and Fint the interaction force exerted on the
probe. Note that these constants can be expressed in terms
of experimental quantities; m � k=!2

0, b � k=�Q!0�, and
F � kA0=Q, where !0, Q, and A0 are the resonance fre-
quency, quality factor, and free oscillation amplitude, re-
spectively. � is the instantaneous position of the tip, which
has a fixed end on top of a mechanical actuator at z, as
shown in Fig. 1. If we focus on the harmonic motion of the
probe, we obtain the solution of the form,

 ��z; t� � �0�z� � A�z� sin�!t� ��z��; (2)
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z
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FIG. 1 (color online). Schematic showing the motion of the
probe tip.
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where �0, A, and � are the mean deflection (<0 in Fig. 1),
amplitude, and phase shift of the oscillation, respectively.

In general, Fint is a nonlinear function of the tip-sample
distance z and contains both conservative and dissipative
(i.e., nonconservative) forces,

 Fint � Fc�z� � Fnc; (3)

where the conservative term Fc, by definition, depends
only on the distance z. Although it is difficult to find the
generalized form of the dissipative force Fnc, one can
alternatively calculate the dissipation energy, integrated
over one period, as

 Edis �
Z T

0
dt _�Fnc

�
Z T

0
dt _��m ��� b _�� k�� F cos!t� Fc�: (4)

Inserting Eq. (2) into Eq. (4), one can obtain the following
general dissipation energy,

 Edis � ���FA cos�� b!A2�; (5)

which is equivalent to the previous result obtained by a
different approach [16]. Therefore, the dissipated energy,
which is always given by Eq. (5), is a general and equiva-
lent description of Fnc regardless of its specific form as
long as the probe motion is harmonic.

To determine the probe motion analytically, let us con-
sider the following form of interaction,

 Fint � Fc�z� � ��z� _z; (6)

where � represents the ‘‘effective‘‘ damping coefficient of
a given dissipative interaction. Such a form of force may
describe many physically interesting interactions such as
the van der Waals, electrostatic, hydrodynamic, or capil-
lary meniscus forces. Note that although the term ���z� _z
may be replaced by some other specific forms of dissipa-
tion, one may still employ the effective and intuitive coef-
ficient � as a parameter describing a given dissipation [15],
which will also result in the same formula of dissipation
energy, Eq. (5).

Combining Eqs. (1) and (6), one can rewrite the equation
of motion as

 m ��� b _�� k� � F cos!t� Fc�z� �� � ��z� �� _�;

(7)

where z� � is the instantaneous tip-sample distance, with
z regulated by external feedback control of the actuator.
Inserting Eq. (2) into Eq. (7), multiplying both sides of the
resulting equation by sin�!t� �� and cos�!t� ��, and
then integrating over an oscillation period, one can obtain
the two general analytical relations for the amplitude,
phase, and interaction forces as

 

Z �

0

d�
�
Fc�z� A cos�� cos� � �

F
2

sin��
A
2
�k�m!2�;

(8)

 

Z �

0

d�
�

��z� A cos��sin2� �
1

2

�
F
A!

cos�� b
�
: (9)

Here we have used the approximation j�0j � jz�
A sin�!t� ��j. This condition is satisfied in practice under
typical operating conditions [17] and is normally assumed
in the analysis of dynamic atomic force microscopy [6,12].
From the governing equations given by Eqs. (8) and (9), the
amplitude and phase at a given frequency and distance
(that is, the resonance curves at a given distance) are
completely determined, provided that Fc and � which
describe the tip-sample interactions are known.

Conversely, with the amplitude and phase measured at a
distance z, one can derive the corresponding interaction
forces Fc and � that satisfy Eqs. (8) and (9). To invert the
integral equations, we formally express Fc and � in terms
of the Laplace transform of certain functions C��� and
���� [15], respectively, as

 Fc�z� 	
Z 1

0
d�e��zC���; (10)

 ��z� 	
Z 1

0
d�e��z����: (11)

This procedure implicitly requires that the interaction van-
ishes as z! 1, which is always satisfied. Substituting
Eqs. (10) and (11) into Eqs. (8) and (9), we obtain

 

Z 1
0
d�C���e��zI1��A� �

F
2

sin��
A
2
�k�m!2�; (12)

 

Z 1
0
d�����e��z

I1��A�
�A

�
1

2

�
F
A!

cos�� b
�
; (13)

where I1��A� is the modified Bessel function of the first
kind of order one and is represented by the power series,

 I1��A� �
X1
k�0

��A�2k�1

2�2k�1�k!�k� 1�!
: (14)

Inserting this into Eqs. (12) and (13), one can finally trans-
form the integral equations of Eqs. (8) and (9) into the
following linear differential equations of infinite order that
Fc and � satisfy
 X1
k�0

A2k�1�z�

2�2k�1�k!�k�1�!

d2k�1

dz2k�1
Fc�z���

F
2

sin��z�

�
A�z�

2
�k�m!2�; (15)
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X1
k�0

A2k�z�

2�2k�1�k!�k� 1�!

d2k

dz2k ��z� �
1

2

�
F

A�z�!
cos��z� � b

�
;

(16)

with the boundary conditions

 

dk

dzk
Fc�z� �

dk

dzk
��z� � 0 as z! 1; k � 0; 1; 2; . . . :

(17)

In principle, the tip-sample interactions represented by
Fc and � can be exactly determined by numerical integra-
tion of Eqs. (15) and (16). In practice, however, one may
consider only the first few order terms until the desired
accuracy is reached. This process depends on how many
order terms in the series expansion of the derivatives in
Eqs. (15) and (16) are kept. We will confirm later that one
can always obtain a satisfactory accuracy both (i) for small
modulation amplitude, where consideration of only the
first term suffices and (ii) for an arbitrary amplitude, where
higher-order terms should be included.

Let us consider, for simplicity, the first order term (i.e.,
k � 0 term) in Eqs. (15) and (16). We can easily obtain the
following 1st order expressions for the interaction forces in
terms of the known amplitude and phase,

 F�1�c �z� �
Z 1
z
dz
�
F
A�z�

sin��z� � �k�m!2�

�
; (18)

 ��1��z� �
F

A�z�!
cos��z� � b: (19)

Differentiating Eq. (18) with respect to z, the force gradi-
ent can be obtained, which is equivalent to the elasticity of
any binding material, such as the water meniscus, that
exists between the tip and substrate [9]. On the other
hand, Eq. (19) can be used to calculate the corresponding
dissipation energy by direct integration of F�1�nc given by
���1��z� _z. Note that Eq. (19) or Eq. (5) implies that if the
amplitude A is kept constant by a feedback loop, the
simultaneously acquired phase � provides the information
on energy dissipation. That is why phase imaging provides
an additional capability of, for example, mapping material
domains [6].

To demonstrate the accuracy and validity of the formal-
ism that determines the tip-sample interactions, we first
preassume the interaction, evaluate analytically the result-
ing amplitude change and phase shift from Eqs. (8) and (9),
and then reconstruct the tip-sample forces by solving
Eqs. (15) and (16). The validity of the theory can then be
directly justified by comparing the assumed and the re-
constructed forces. For example, let us consider the con-
servative Lennard-Jones-type force that contains 1=z6 (re-
pulsive) and 1=z2 (attractive) force terms [15,18],

 Fint�z� � F0

�
l4

3z6
�

1

z2

�
; (20)

where F0 is a constant and l is the characteristic distance
for which the attractive force is at minimum.

Substituting Eq. (20) into Eqs. (8) and (9) and solving
them simultaneously, the amplitude and phase curves for
different free oscillation amplitude A0 are obtained, as in
Fig. 2. The coexistence of different solutions gives rise to
the hysteresis behaviors [12,19], consisting of two stable
states (AB, CD) and one bistable sate (BD). As shown in
Fig. 2(a), as the tip is brought close to the surface, the
attractive force increases and thus the amplitude decreases
through the point A in the lower branch. When the tip
approaches the point B, the tip jumps to its upper stable
state C. If the tip is pulled off from the surface at this state
C, it follows the upper branch, C! D! A. Note that with
the decrease of A0, the coexistence region gradually dis-
appears, as shown in Figs. 2(a), 2(c), and 2(e). On the other
hand, as the tip experiences the repulsive force, the phase
shift exhibits a dramatic change, as shown in Figs. 2(b),
2(d), and 2(f). Therefore, measurement of the phase is a
very sensitive way to identify the repulsive region.

Now we are able to reconstruct the tip-sample interac-
tion forces by inserting the approach curves of Fig. 2 (1 !
A! B! C! 0) into Eq. (15). We have solved Eq. (15)
considering only up to the third order terms (i.e., up to k �
2 term). Figure 3 presents the preassumed force (solid
curve) of Eq. (20) as well as the reconstructed forces
(dotted curve) as a function of the distance z for A0=l �
1, 0.8, and 0.1. Note that the 1st order solution corresponds
to Eq. (18), whereas the 2nd and the 3rd order solutions are
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FIG. 2 (color online). Amplitude and phase curves for differ-
ent free oscillation amplitudes A0=l, with F0Q=�l

3k� � 5. With
the known force of Eq. (20), one can calculate the amplitude and
phase responses from the governing Eqs. (8) and (9).
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obtained by numerical integration of the corresponding
order terms in Eq. (15). There is an overall agreement
between the preassumed and the reconstructed forces in
all cases, but some discrepancies exist near z � lwhere the
force curve suddenly reverses its slope. Interestingly, the
discrepancy is gradually disappeared and an excellent
agreement is obtained, with the decrease of A0 as well as
with the inclusion of the higher-order terms at a given A0,
as shown in Figs. 3(a)–3(c). This is expected, since the
accuracy of the reconstructed force is determined by the
approximation for I1��A� as shown in Fig. 3(d), where P1,
P2, and P3 are the polynomials including up to the first,
second, and third order terms in the Taylor expansion of
I1��A�, Eq. (14), respectively. As observed in Fig. 3(d), we
obtain an excellent agreement as the oscillation amplitude
is decreased [case of (i)] or as the higher-order terms are
included at a given amplitude [case of (ii)].

Here the discrepancy between the assumed and the
reconstructed forces at a given tip-sample distance z is
associated with the difference between the values of I1

and Pi �i � 1; 2; 3; . . .� for a given �A which also depends
on z. Therefore, the difference between I1 and Pi at a given
z provides the minimum value of the numerical error. For
example, the difference between the assumed and the
reconstructed forces, with the terms up to the 3rd (1st)
order included, is about 1.1% (42%) at z=l � 1 for A0=l �
1 [see Fig. 3(a)], whereas the difference between I1 and P3

(P1) is about 0.5% (37%) at �A 
 2 which is estimated
from the integrand of Eq. (10) at z=l � 1. Note that the
appropriate higher-order terms in Eq. (15) that should be
included to obtain a solution with the desired accuracy can
be estimated from the fact that �� 1=l and A� A0 so that
�A� A0=l. Thus, if A0=l � 1, i.e., �A� 1, then it is

sufficient, from Fig. 3(d), to consider terms only up to
the 3rd order in Eq. (15) to obtain the accuracy of about
1%, as shown in Fig. 3(a). Of course, as the higher-order
terms are included, the higher accuracy is obtained.

In summary, we have rigorously derived the general
governing integral equations, Eqs. (8) and (9), which com-
pletely determine the motion of the probe from a known
tip-sample interaction. We also have obtained the general
differential equations, Eqs. (15) and (16), which allow one
to reconstruct the unknown tip-sample interactions from
the measured motion of the probe in AM-AFM. The
present work will enable one to make a comprehensive
analysis of the experimental measurement of the amplitude
and phase in AM-AFM, which is essential to understand
the scan images of sample as well as their physical-
chemical properties [20]. AM-AFM is now expected to
be widely employed as a quantitative force measurement
tool in addition to its atomic-resolution imaging capability.
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[12] J. P. Aimé, R. Boisgard, L. Nony, and G. Couturier, Phys.

Rev. Lett. 82, 3388 (1999).
[13] R. Garcı́a and A. San Paulo, Phys. Rev. B 61, R13381

(2000).
[14] Franz J. Giessibl, Rev. Mod. Phys. 75, 949 (2003).
[15] J. E. Sader and S. P. Jarvis, Appl. Phys. Lett. 84, 1801

(2004); J. E. Sader et al., Nanotechnology 16, S94 (2005).
[16] B. Anczykowski et al., Appl. Surf. Sci. 140, 376 (1999).
[17] �0=�z� A� 
 �Fint=k�=�z� FQ=k� 
 1=Q, where Q ty-

pically exceeds 102.
[18] U. Durig, Appl. Phys. Lett. 76, 1203 (2000).
[19] L. Nony, R. Boisgrad, and J. P. Aimé, J. Chem. Phys. 111,
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FIG. 3 (color online). (a)–(c) Preassumed (solid curve) and
reconstructed (dotted curve) forces for different A0=l. Here the
vertical axis scale factor is F0=�5l2� � 0:3 nN for 2F0=�3l2� �
1 nN and l � 1 nm. (d) Plot of the exact and approximate values
of I1 of Eq. (14).
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