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Results are presented for the autocorrelation function of the vortexlike nonaffine piece of the linear
elastic displacement field in dense random bidisperse packings of harmonically repulsive disks in 2D. The
autocorrelation function is shown to scale precisely with the length of the simulation cell in systems
ranging from 20 to 100 particles across. It is shown that, to first order, the displacement fields can be
thought to arise from the action of uncorrelated local random forcing of a homogeneous elastic sheet, and
a theory is presented which gives excellent quantitative agreement with the form of the correlation
functions. These results suggest measurements to be made in many types of densely packed, random
materials where the elastic displacement fields are accessible experimentally such as granular materials,
dense emulsions, colloidal suspensions, etc.
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When Bravais crystals are deformed at zero temperature,
the gradient of the displacement field is perfectly homoge-
neous; that is, the deformation is affine [1]. In disordered
systems, on the other hand, the response is not affine, even
at lowest order in the imposed deformation. These non-
affine deformations are generally observed to lead to re-
ductions in the naive value of the shear modulus which
would have been expected based on assumptions of affine
deformation. This fact has been noted empirically for many
types of disordered systems such as metallic glasses [2– 4],
emulsions [5–7], granular materials [8–10], and cross-
linked, semiflexible polymers [11–13]. In particular,
O’Hern and co-workers [14] have shown that these non-
affine corrections to the shear modulus completely domi-
nate the system behavior on approach to the loss of rigidity,
the so-called jamming transition [15], during the dilation of
repulsive particle packings, and a better understanding of
them is of central importance to the larger body of work on
the mechanical properties of disordered systems.

Leonforte et al., in a series of works, studied the spatial
structure of the nonaffine displacement fields [2–4], which
were observed to have a vortexlike structure. They ex-
tracted a length scale from the autocorrelation function
of these vortexlike fields, noting that the function crossed
from positive to negative at a length of about 30 particle
diameters, regardless of the size of system being simulated.

More recently, DiDonna and Lubensky (DL) [16] have
approached the problem of nonaffine response from within
a continuum framework. Their central result was that the
autocorrelation of the displacement field decayed like the
logarithm of distance (in 2D). Clearly, such logarithmic
behavior must somehow be cut off at large distances, but
the precise nature of this long range cutoff was not directly
addressed by them. Without a more explicit treatment of
the large length scales (lengths on the order of the system
size), it becomes difficult to determine whether the results
of DL are consistent with those of Leonforte et al.

Here I follow the basic direction taken by DL; however,
the present approach differs in two important ways. First,
DL rely on a framework of pairwise interactions within a
continuum formalism. The expressions which are derived
for the nonaffine displacements are thus necessarily ap-
proximate, and it is difficult to ascertain the quality of this
approximation. The present approach makes no appeals to
coarse-graining, instead directly utilizing the Hessian ma-
trix of the system to derive exact atomistic expressions for
the elastic displacement field. Another advantage of focus-
ing directly on the Hessian matrix rather than bond stiff-
nesses and quenched forces is that it allows one to treat
multibody interactions (embedded atom methods, covalent
networks, semiflexible polymers, etc.) on the same footing
as pairwise interactions, although, numerically, we have
considered only the latter here. The second, perhaps more
crucial, difference is that the present work takes the
boundaries of the system explicitly into account, allowing
for excellent quantitative agreement with the form of the
autocorrelation function which is observed in numerical
simulations.

In this Letter, I first briefly review the formalism, pre-
sented in detail in Ref. [17], required to compute the linear
elastic response of a disordered system. Particular empha-
sis is placed on the random nature of the strain induced
forces �i�. I then discuss the numerical protocols used and
present results for ensembles of various size. Finally, I
show how simple assumptions about the vibrational spec-
trum and the random nature of �i� can lead to an analytical
expression for the autocorrelation function of the displace-
ment field. The theory predicts that the autocorrelation
functions for systems of different size should collapse
when plotted as a function of distance scaled by the length
of the simulation cell L, with the master curve crossing
zero at about 0.325.

Throughout this Letter, I use Latin indices to indicate
particle identity or to indicate a particular eigenmode of the
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system and Greek indices to indicate Cartesian coordi-
nates. Repeated Greek indices should always be summed,
while explicit sums will always be written for Latin
indices.

Consider a system in a stable mechanical equilibrium
state subject to some imposed boundary conditions. Sup-
pose that boundary is deformed affinely. How does the
configuration of all the particles change in order to main-
tain mechanical equilibrium? The answer to this question
has long been known, as the same problem must be solved
in order to compute the elastic constants in lattices with a
basis [18], but it has only more recently been appreciated
that the same considerations must apply unaltered to dis-
ordered systems [17,19–22]. The fact that the same for-
malism should apply to a disordered packing should not be
surprising; after all, a disordered system (with periodic
boundaries) is nothing more than a Bravais lattice with a
huge number of particles in the basis.

If we first make an affine deformation of the system with
�ri� � �yi��x, each particle will experience a nonzero
force which we denote by �i� and refer to as the affine
forces. One may compute them directly from the Hessian
matrix of the system:

 �i� �
:
�
@Fi�
@�
� �

X
j�i

Hi�jxyij; (1)

where yij is simply yi � yj. Recall that the Hessian matrix
of the system is the second derivative of the energy and first
derivative of the forces:

 Hi�j� �
@2U

@ri�@rj�
� �

@Fi�
@rj�

� �
@Fj�
@ri�

:

In order for the system to return to a state of zero force,

the corrections to the affine motion dr
�
i�=d� must induce

forces which exactly cancel the affine forces:

 �i� �
X
j

Hi�j�
dr�j�
d�

: (2)

The ring over the r denotes the fact that Eq. (2) is an
equation for the nonaffine piece of the elastic displacement
field. For periodic systems, the solution is defined only up
to rigid translations since the Hessian matrix is translation-
ally invariant, and we choose, conventionally, the solution
which has no translational component:

P
i�dr
�
i�=d�� � 0.

To study the elastic response of disordered packings, a
simple numerical protocol was used. All results are for 2D
bidisperse mixutures of harmonically repulsive disks. U �
s2=2 for s > 0 and 0 otherwise, with s � 1� r=�ra � rb�.
The mixture is the same as that introduced in related work
[17,23,24]. The mixtures used throughout have particles
with radii: rL � 0:5 and rS � 0:3 and a number ratio of
NL � NS��1�

���
5
p
�=4�. The systems are prepared via a

zero temperature quench from an initially random state
as in Ref. [14]. The initial minimization is performed with

a truncated Newton-linear conjugate gradient method us-
ing Armijo backtracking with a sufficient decrease parame-
ter of 0.1 [25]. This protocol can be expected to generate
configurations which are quite disordered, as no annealing
is allowed.

The elements of the Hessian matrix are evaluated using
the analytical form for pair potentials. First defining the
elementary contributions from individual bonds:

 Mi�j� �

�
cij �

tij
rij

�
nij�nij� �

tij
rij
���; (3)

where t and c are the first and second derivatives of the
bond energy with respect to length, and nij� is the unit
normal pointing from particle i to particle j. Then one
obtains the particlewise expression for the Hessian from
the individual bond contributions:Hi�j� � �Mi�j� for the
off diagonal terms (j � i) and Hi�i� �

P
jMi�j� for the

diagonal terms (j � i). In order to compute the nonaffine
response, the field �i� is first evaluated using (1) and (3),
then (2) is solved via a linear conjugate gradient routine;
note that explicit finite strain and energy reminimization is
only ever imposed on the system as a check on the deriva-
tion of Eq. (2).

In Fig. 1, we show the fields � and dr�

d� for a typical 30	

30 system. As expected, based on the fact that these
systems are not allowed to anneal at all, � appears com-
pletely random. The spatial autocorrelation function of the
� field decays to zero within 2 particle radii (not shown).
The nonaffine displacement, on the other hand, shows the
striking ‘‘vortexlike’’ features which have been observed
earlier by others [2–4,16].

To study such vortexlike displacement fields, Tanguy
et al. [3] have suggested using the standard 2 point auto-
correlation function (introducing the notation vi� �

:

dr
�
i�=d�):

 g� ~�� �
: Z

v�� ~r� ~��v��~r�d~r: (4)

FIG. 1. Reprinted from Ref. [17] with the kind permission of
Springer Science and Business Media. The fields �i� (left) and
dr�i�=d� (right) for a typical 30	 30 system. Note the random
nature of � in contrast to the striking correlations in dr�

d� .
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One often then takes averages over angles to define a 1D
g���. The interest of Tanguy et al. in g��� is that, while at
small �, the correlation function must be positive; when �
becomes larger than some size which characterizes the
vortices, g should cross from positive to negative. The
characteristic length can then be identified with the zero
crossing of g���. We plot this autocorrelation function for
our system in Fig. 2.

To compute an approximate analytical form for g� ~��,
first expand (2) in terms of the eigenmodes of the Hessian
to get

 vi� �
X
p

 pi�
��p=�p�

;

where  pi� is the pth eigenmode of the Hessian and �p is
the projection of �i� onto the pth eigenmode: �p �P
i�i� 

p
i�. First note that if the field �i� is random, it

should be random in any basis, so we may safely suppose
that the �p is a random Gaussian variable. Next, in analogy
with DL, we suppose that the eigenmodes of the Hessian
can be approximated (to first order) as the transverse and
longitudinal plane waves which are the eigenstates of the
Lamé-Navier operator [26].

 vi�L�T� � ~��1
L�T�

X
m;n

p̂L�T�mn�

1=��mn�

ei2��mxi�nyi�=L������������������
m2 � n2
p (5)

[27]. Here p̂L�T�mn� is the polarization vector for the longitu-
dinal (transverse) wave and ~�L�T� is an effective renormal-
ized stiffness (which is not discussed further here) for the

longitudinal (transverse) waves. This expression explains
the fact that Leonforte et al. observe amplitudes propor-
tional to 1=k in the Fourier decomposition (both longitu-
dinal and transverse) of their displacement fields [4].

To compute the autocorrelation function, one simply
uses the convolution theorem; since waves with different
wave vector or polarization are uncorrelated, the only
contributions come from individual waves:

 g� ~�� �
�
h�2i

~�2
L

�
h�2i

~�2
T

�X
mn

cos�2��m�x � n�y�=L�

m2 � n2 : (6)

Technically, the sum should have a Debye-like cutoff at
large m; n to account for the finite number of eigenmodes
in the finite system, but we neglect this cutoff here as we
will only be numerically evaluating finite partial sums. One
often approximates such sums by an isotropic integral over
~k which reduces to an integral of the Bessel function J0,R
1
1 �2�=k�J0�2�k��dk; however, such an approach is

bound to fail when � is of the same order as the length
of the box. This should be obvious, as one must have the
translational symmetry required of g; namely, g�x; y� �
g�x�mL; y� nL�. The square shape of the cell also
dictates that g should, strictly speaking, be anisotropic.
The curve corresponding to a horizontal separation must,
by symmetry, be flat as it approaches 0:5, while the curve
corresponding to a diagonal separation becomes flat only at
0:5

���
2
p

and is still decreasing at 0:5.
Figure 2 shows the numerically obtained g��� curves

along with partial sums of (6) (taken for 3 different angles
of ~�: 0,�=8, and�=4) and the integral over J0. Theoretical
curves are scaled arbitrarily, but this single fitting parame-
ter does not affect, e.g., the location of the zero crossing.
The first 40 terms of the sum are used and we find that the
curve is well converged in the range plotted, with slower
convergence at short � due to the coherence of successive
modes for small �. Note that our data are not inconsistent
with the main conclusion of DL, that the correlation func-
tion should decay as the log of the distance up to the system
size cutoff, and that we plot the data in this way in Fig. 3.
However, the limits in which DL evaluate their integral
analogs of the sum (6) to obtain expressions for g��� in real
space make it difficult to compute quantities such as the
zero crossing point, while the fully discrete theory has no
problems.

To summarize, we have shown that, to first order in the
disorder, the nonaffine linear displacements of our random
2D packings can be thought of as the displacement fields
generated by locally random forces applied to a homoge-
neous elastic sheet. As the elastic sheet possesses no
characteristic length, the only length which emerges is
the length of the box itself.

One outstanding problem is that Refs. [2–4] show a well
defined characteristic length, in apparent contradiction
with our results. I can identify essentially two possible
resolutions. First, it is possible that the eigenmodes of the
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FIG. 2 (color online). g��=L�=g�0� for systems of various L,
where L is the cell length. The 4 smallest sizes of 20	20, 25	
25, 30	30, and 35	 35 represent data averaged over ensembles
of 16 assemblies at each size. The data for the 100	 100 box
correspond to a single system. Theoretically predicted curves are
superimposed on the data. The dark (blue) curve is obtained by
the semicontinuous approximation

R
1
1 �2�=k�J0�2�k��dk, while

the 3 light (red) curves are partial sums over the first 40 terms in
(6) with the delta vector lying at angles of 0, �=8, and �=4.
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Hessian are not, in fact, well approximated by plane waves.
Silbert and co-workers [28] have pointed out that, near the
onset of rigidity loss in repulsive systems, the approxima-
tion of the eigenmodes by plane waves does indeed become
bad. However, it seems unlikely that this is the case for the
systems in Ref. [3], as this approximation was checked
directly and found to be reasonably good.

A more likely explanation is the annealing protocol to
which the systems in Refs. [2–4] are subjected. The sys-
tems here are subjected to the most violent quench pro-
tocol conceivable, whereas those in Refs. [2–4] have
been well annealed. It would be interesting, indeed, to
measure the local � field as prepared in Refs. [2–4] to
rule out the lack of local spatial correlations which were
assumed in the derivation here. Such correlations could
provide an intrinsic length scale and might explain the lack
of scaling of g��� with the system size; however, one
would expect to regain this scaling eventually for large
enough samples. It would be straightforward to incorporate
these correlations in the expression for the correlation
function.

This material is based upon work supported by the
National Science Foundation under Grants No. DMR
0454947 and No. PHY99-07949. I thank A. Lemaı̂tre and
M. O. Robbins for many useful discussions.
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FIG. 3 (color online). Data from Fig. 2, plotted as a function of
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