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We show that critical opalescence, a clear signature of second-order phase transition in conventional
matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This
behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to
all orders, associated with baryon production. This phenomenon together with a similar effect in the
isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for
the QCD critical point in experiments with nuclei at high energies.
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It has been suggested recently that the baryon-number
fluctuations, in event-by-event studies of multiparticle pro-
duction, may lead to new observables, in experiments with
nuclei, associated with the existence and location of the
critical point in the QCD phase diagram [1]. Theoretically,
the significance of the baryon-number density nB� ~x� near
the critical point comes from the fact that its fluctuations,
expressed in terms of the density-density correlator
hnB� ~x�nB�0�i, follow the same power law as the sigma field
correlator h�� ~x���0�i associated with the chiral order pa-
rameter �� ~x� � ��� [1,2]. As a result, the critical thermo-
dynamics of QCD matter in equilibrium can be formulated
in terms of the baryon-number density nB� ~x�, an alternative
but equivalent order parameter related to the final state of
nuclear collisions when they freeze out close to the critical
point. The corresponding theory of critical power laws in
the baryon sector, the observability of which we explore in
this Letter, is based on the effective action belonging to 3D
Ising universality class:
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where � ’ 5 is the isotherm critical exponent and G a
universal, dimensionless coupling in the effective poten-
tial, with a value in the range G ’ 1:5–2 [3]. In writing
Eq. (1) we have considered, following the above discus-
sion, the order parameter m� ~x� � gT�2

c nB� ~x�, associated
with the fluctuations of baryon-number density at the
critical point; the factor T�2

c guarantees dimensional con-
sistency and g is a nonuniversal dimensionless constant.

The free energy (1) in order to describe a critical system
of QCD matter produced in nuclear collisions must be
adapted to the relativistic geometry of the collision. To
this end, the longitudinal coordinate xk is replaced by the
space-time rapidity y, and the corresponding measure of
integration in (1) takes the form dxk � �c coshydy, where
�c is the formation time of the critical point. In the central

region of size �y the configurations nB�y; ~x?� contributing
to the partition function are boost invariant quantities
defining at the same time two-dimensional baryon-number
density configurations �B� ~x?� in the transverse plane:
nB� ~x?� � �B� ~x?��2�c sinh��y=2���1. Integrating now in
rapidity and rescaling the basic variables, ~x? ! Tc ~x?,
�B ! T�2

c �B, Eq. (1) is simplified as follows:
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The critical fluctuations of systems belonging to the class
(2) of a 2D effective action can be consistently described in
a scheme where the saturation of the partition function is
obtained considering the contribution of the singular solu-
tions ��s�B of the Euler-Lagrange equation [4]:
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The description of the critical system in this scheme is
optimal if Cg2 
 1.

The main characteristics of critical QCD matter (� ’ 5,
G ’ 2) produced in nuclear collisions and described by
Eq. (3) are summarized as follows [4]: (a) The system is
organized within critical domains (clusters) of a maximal
size (correlation length): �? ’

��c
8 sinh��y=2�. (b) For

typical nuclear collisions (�c ’ 10 fm, �y � 2) the trans-
verse correlation length becomes sufficiently large (�? �
6 fm) allowing for critical fluctuations to develop in full
strength when the system freezes out near the critical
point. (c) Within a critical domain (j�~x?j � �?) the cor-
relator obeys a power law corresponding to a fractal di-
mension dF �

2�
��1 (dF ’

5
3 ): h�B� ~x?��B�0�i � j ~x?jdF�2.

This power law is the origin of critical opalescence [5] in
baryonic QCD matter produced in high-energy nuclear
collisions.
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In conventional matter (QED matter) the phenomenon of
critical opalescence is revealed when light of long wave-
length (comparable to the correlation length) scatters from
a substance near criticality. The intensity of scattered light
is proportional to the Fourier transform of the density-
density correlator and becomes singular for small momen-
tum transfer k giving rise to a macroscopic effect [5]. In
QCD matter, correspondingly, the Fourier transform of the
correlator h�B� ~x?��B�0�i obeys also a power law:
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Z
d2 ~x?e
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where �~k is the Fourier transform of �B� ~x?� and h�~k�

~k
i the

two-particle correlator in transverse momentum plane,
associated with baryon production in nuclear collisions.
More precisely,

 h�~k�

~k
i �

X
~p

h�B� ~p��B� ~p� ~k�i � h�B�0��B� ~k�i (5)

under the assumption that the dependence of
h�B� ~p��B� ~p� ~k�i, on the reference momentum ~p, is weak.

The power law (4) in momentum space can be gener-
alized to a self-similarity property of multiparticle cor-
relators, valid for the solution (3) of QCD matter at criti-
cality [4]:

 h�B�� ~k1� � � ��B�� ~kq�1��B�0�i � ��dF�q�1�h�B� ~k1� � � ��B� ~kq�1��B�0�i �q � 2; 3; . . .�: (6)

In geometrical language, Eq. (6) defines a fractal dimension ~dF in transverse momentum space, independent of q (~dF �
2� dF), directly related to the isotherm critical exponent of QCD: ~dF �

2
��1 [6]. The observable effect implied by (6) is a

specific class of power laws, satisfied by the scaled factorial moments of all orders [7]:

 Fq�M� �
�
hNB�NB � 1� � � � �NB � q� 1�i

hNBiq

�
�SM

�MdF�q�1� �M
 1� (7)

�q � 2; 3; . . .� defined in small domains �SM of transverse
momentum plane, constructed by a subdivision of the
available space in M2 two-dimensional cells (�SM �
M�2). The power laws (7) with a characteristic linear
spectrum of indices �q � �2� ~dF��q� 1� describe, in
general, the fluctuations in a second-order phase transition
[6,8], but here, in particular, they reveal the effect of
critical intermittency associated with the production of
baryonic QCD matter near the critical point. This phe-
nomenon is the analogue of critical opalescence, observed
in conventional matter near criticality. Both phenomena
have their origin in the power laws of the correlators in
configuration space, implying giant density fluctuations at
the critical point as a result of the appropriate fractal
geometry, valid within the universality class of the critical
system under consideration.

On the basis of the prediction (7) one may proceed to a
Monte Carlo simulation of critical events in the case of a
typical process A� A at high energies. We have chosen
collisions of medium size nuclei producing net baryons in
the central region with a constant density in rapidity dNB

dy ’

10 (plateau), within a domain of size �y ’ 2, at energies
corresponding to CERN-SPS. A self-consistency require-
ment in this treatment is the constraint Cg2 
 1, which
may justify a posteriori the saddle point saturation of the
partition function leading to Eq. (3). In order to clarify this
issue for the above system under simulation, we consider
the following generic form coming from the thermal aver-
age h�Bi with the aid of Eq. (3):

 hNBi ’
1

g

�
Scr

CG1=�

�
�=���1� �� 2

1���

�� 1
1���

�� ’ 5; G ’ 2�; (8)

where Scr is the area of the critical cluster, Scr ’ O��2
?�.

For the specifications of the system under study and for a
typical time scale �cTc ’ 20, we findCg2 ’ O�10�, a result
which fulfils the consistency requirement (Cg2 
 1).

The simulation of events involving critical fluctuations
in the baryonic density requires the generation of baryon
transverse momenta correlated according to the power law
(4). One possibility to produce such a set of momenta is to
use the method of Lévy random walks [9]. It is convenient
to perform independent one-dimensional walks in each
transverse momentum component separately and then
form the Cartesian product in order to obtain the corre-
sponding vectors. In this case the successive steps in each
dimension are chosen according to the probability density:

 ~��pi� �
	p	min

1� �pmin

pmax
�	
p�1�	
i ;

pmin � pi � pmax; i � x; y:

(9)

To generate a single event, one performs n� 1 random
walk steps in each direction (px or py), where n is the
multiplicity of the event. At each step the updated position
of the walker determines the px (or py) coordinate of the
baryon transverse momentum, respectively. The starting
transverse momentum vector in each event is chosen uni-
formly in ��pmax; pmax� � ��pmax; pmax�. The produced
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set of baryon transverse momenta possesses the correct
fractal dimension ~dF �

1
3 provided that pmin

pmax
� 107 and 	 �

1
6 . The described algorithm can be used to generate an
ensemble
of events involving critical baryon density fluctuations.
The corresponding fractal pattern can be revealed through
factorial moment analysis [7]. In Fig. 1 we show, in a log-
log plot, the results obtained for an ensemble of 600 criti-
cal events, each one having the multiplicity n 	 hNBi �
20. The solid circles are the calculated moments up to the
4th order. The solid lines are the theoretical predictions
according to Eq. (7). It is clearly seen that the factorial
moments follow to a good approximation, and for a wide
range of scales a power-law behavior Fq � �M2�sq with
exponents sq satisfying very well the theoretical prediction

sq � �q� 1��1�
~dF
2 �. In the same plot we show for com-

parison the behavior of the second moment (gray triangles)
in a conventional system corresponding to the formation
of mixed events from the original ensemble of the criti-
cal events. As expected, the effect of critical fluctuations
has disappeared in the system of mixed events (the slope
s�m�2 ’ 0).

In order to reveal the observational content of the pattern
in Fig. 1 we may extract the local multiplicity fluctuations
occurring in a typical cell in transverse momentum plane
corresponding to the partition number M � 10. In the
simulated system under consideration we find in this cell
hNBi � 0:19 and hN2

Bi � 1:8 corresponding to a value of
the factorial moment F2 � 40. These values lead to a
sizeable local fluctuation �NB

hNBi
� 7, which increases with

M, following the power law underlying the pattern in
Fig. 1. In fact, the size of local multiplicity fluctuations
is associated with the size of F2 through the lower-bound

constraint: �NB
hNBi
� �F2 � 1�1=2. In the limit M
 1 the sec-

ond moment in Fig. 1 is also very large (F2 
 1), and as a
result, giant local fluctuations are developed, probing the
critical singularity of the system. In the actual measure-
ments, however, experimental limitations, due to finite
statistics (empty bin effect) as well as to finite momentum
resolution �p

p , put an upper limit to the partition number M
corresponding to a threshold of intermittency breaking and
therefore to an interruption of the pattern of critical fluc-
tuations at very small scales. In the simulated system under
study the pattern in Fig. 1 corresponds to a data set of 6�
102 events and the upper limit of the partition numberM—
assuming infinite momentum resolution—turns out to be
of the order M � O�102� determined solely by finite sta-
tistics. However, in a real experiment, finite statistics may
be less restrictive than the finite momentum resolution
leading to an upper bound: M ’ p

�p � 100 for a typical

resolution scale �p
p � 10�2 in current experiments.

We have shown that baryon-number density fluctua-
tions, near the QCD critical point, develop a distinct pat-
tern of power laws, in transverse momentum plane,
associated with the effect of critical intermittency in
QCD matter. The observability of this effect is enhanced
by the conjecture that the same power laws (Fig. 1) are
expected also in the case of net proton-number density
fluctuations, avoiding therefore the observational ambigu-
ities from the contribution of neutrons to the factorial
moments (7). In fact, it has been argued by Hatta and
Stephanov [1] that the singular parts of baryon suscepti-
bility (
B) and proton-number fluctuations coincide, 
B �
h�Np� �p�Np� �pi. As a result, the power laws associated
with these singularities are the same for both the baryon-
number and proton-number density correlators. With these
remarks we may conclude that proton-number measure-
ments in the transverse momentum plane may reveal the
effect of critical baryon-number intermittency in nuclear
collisions, as a signal of QCD criticality. If one combines
this observable effect with the corresponding phenomenon
in the sigma mode of pion production [10], then a complete
set of observables, associated with the existence and loca-
tion of the QCD critical point, naturally emerges.
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