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Quantum electrodynamics (QED) predicts a relationship between the dimensionless magnetic moment
of the electron (g) and the fine structure constant (�). A new measurement of g using a one-electron
quantum cyclotron, together with a QED calculation involving 891 eighth-order Feynman diagrams,
determine ��1 � 137:035 999 710 �96� �0:70 ppb�. The uncertainties are 10 times smaller than those of
nearest rival methods that include atom-recoil measurements. Comparisons of measured and calculated g
test QED most stringently, and set a limit on internal electron structure.
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The electron g value [1], the dimensionless measure of
the electron magnetic moment in terms of the Bohr mag-
neton, is a fundamental property of the simplest of stable
elementary particles. The fine structure constant,
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gives the strength of the electromagnetic interaction, and is
a crucial building block in our system of fundamental
constants [2]. Quantum electrodynamics (QED), the won-
derfully successful theory that describes the interaction of
light and matter, provides an extremely precise prediction
for the relationship between g and�, with only small, well-
understood corrections for short-distance physics.

A new measurement of g [1] achieves an uncertainty that
is nearly 6 times smaller than that of the last measurement
of g, reported back in 1987 [3]. An improved QED calcu-
lation that includes contributions from 891 eighth-order
Feynman diagrams [4] now predicts g in terms of �
through order ��=��4. Together, the measured g and the
QED calculation make it possible for experimenters and
theorists to jointly announce here a new determination of
�. Its 0.70 ppb uncertainty is the first reduction in uncer-
tainty for an � determination since 1987 (Fig. 1). The
uncertainty is 10 times smaller than for any other method
to determine � [5,6]. Comparisons of measured and calcu-
lated g values test QED most stringently, and probe for
possible electron substructure at a surprisingly high energy
scale.

Since g � 2 for a Dirac point particle, the dimensionless
moment is often written as g � 2�1� a�. The deviation a
is called the anomalous magnetic moment of the electron
or simply the electron anomaly. It arises from the vacuum
fluctuations and polarizations that are described by QED,
with only small additions for short-distance physics that
are well understood within the standard model [7],

 a � a�QED� � a�hadron� � a�weak�: (2)

Any additional contribution to the anomaly would there-
fore be extremely significant, indicating electron substruc-
ture [8], new short-distance physics, or problems with
QED theory (and perhaps with quantum field theory
more generally).

A long series of improved measurements of g, reviewed
in [3,9], now continues after a hiatus of nearly 20 years.
The new measurement achieves a much smaller uncer-
tainty in g [1] by resolving the quantum cyclotron and
spin levels of one electron [10] suspended for months at a
time in a cylindrical Penning trap [11]. Quantum jump
spectroscopy of transitions between these levels deter-
mines the spin and cyclotron frequencies, and g=2 is
essentially the ratio of such measured frequencies. The
cylindrical Penning cavity [11] shapes the radiation field
in which the electron is located, narrowing resonance line-
widths by inhibiting spontaneous emission, and providing
boundary conditions which make it possible to identify the
symmetries of cavity radiation modes [12]. A quantum
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FIG. 1 (color). The least uncertain � determinations
[3,5,6] (a), with older determinations [2] on a 10 times larger
scale (b). Measured g are converted to � using current QED
theory.
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nondemolition coupling of the cyclotron and spin energies
to the frequency of an orthogonal and nearly harmonic
electron oscillation, reveals the quantum state [10]. This
harmonic oscillation of the electron is self-excited [13], by
a signal derived from its own motion, to produce the large
signal-to-noise ratio needed to quickly read out the quan-
tum state without ambiguity.

The preceding Letter [1] reports the new measurement,

 g=2 � 1:001 159 652 180 85 �76� �0:76 ppt�: (3)

The largest contribution to the 7:6� 10�13 uncertainty
arises from an imperfect line shape model (0.6 ppt); likely
this can be understood and reduced with careful study.
Extremely small magnetic field instabilities are one pos-
sible cause. The second source of uncertainty is cavity
shifts (0.4 ppt), caused when the cyclotron frequency of
an electron in the trap cavity is shifted by interactions with
cavity radiation modes that are near in frequency. The
frequencies of cavity radiation modes are measured well
enough to identify the spatial symmetry of the modes, and
to calculate and correct for cavity shifts to g from the
known electromagnetic field configurations. A smaller
third uncertainty is statistical (0.2 ppt), and could be re-
duced with more measurements.

QED calculations involving many Feynman diagrams
provide the coefficients for expansions in powers of the
small ratio �=� 	 2� 10�3. The QED anomaly

 a�QED� � A1 � A2�me=m�� � A2�me=m��

� A3�me=m�;me=m��; (4)

is a function of lepton mass ratios. Each Ai is a series,

 Ai � A�2�i
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The calculations are so elaborate that isolating and elimi-

nating mistakes is a substantial challenge, as is determining
and propagating numerical integration uncertainties.

Figure 2 compares the contributions and uncertainties
for g=2. The leading constants for second [14], fourth [15–
17], and sixth [18–22] orders,

 A�2�1 � 0:5; (6)

 A�4�1 � �0:328 478 965 579 . . . ; (7)

 A�6�1 � 1:181 241 456 587 . . . ; (8)

have been evaluated exactly. The latter confirms the value
1:181 259�4� obtained numerically [23]. Very small mass-
dependent QED additions [24–29],
 

A�4�2 �me=m�� � 5:197 386 70 �28� � 10�7;

A�4�2 �me=m�� � 1:837 62 �60� � 10�9;

A�6�2 �me=m�� � �7:373 941 64 �29� � 10�6;

A�6�2 �me=m�� � �6:581 9 �19� � 10�8;

A�6�3 �me=m�;me=m�� � 0:190 945 �62� � 10�12;

(9)

are exactly known functions of the lepton mass ratios [30],
from which they derive their uncertainty

Crucial progress came in evaluating, checking, and de-
termining the uncertainty in the eighth order A�8�1 , which
includes contributions of 891 Feynman diagrams. Typical
diagrams of the 13 gauge invariant subgroups are shown in
Fig. 3. Integrals of 373 of these have been verified (and
corrected) by more than one independent formulation
[4,31]. Verification of the 518 diagrams with no closed
lepton loops is in progress using an automating algorithm
[32]. Their renormalization terms are derived by system-
atic reduction of original integrands applying a simple
power-counting rule [33], allowing extensive cross-
checking among themselves and with exactly known dia-
grams of lower order [34]. Numerical integrations with
VEGAS [35], on many supercomputers over more than
10 years, then yields [4]

 A�8�1 � �1:7283 �35�: (10)

The uncertainty, determined using estimated errors from

contribution to g/2 = 1 + a
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FIG. 2 (color). Contributions to g=2 for the experiment
(green), terms in the QED series (black), and from short-distance
physics (blue). Uncertainties are in red. The �, �, and ��
indicate terms dependent on mass ratios me=m�, me=m� and
the two ratios, me=m� and me=m�, respectively.
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FIG. 3. Typical diagrams from each gauge invariant subgroup
that contributes to the eighth-order electron magnetic moment.
Solid and wiggly curves represent the electron and photon,
respectively. Solid horizontal lines represent the electron in an
external magnetic field.

PRL 97, 030802 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
21 JULY 2006

030802-2



VEGAS, is improved by an order of magnitude over the
previous value [36].

The high experimental precision makes the tenth-order
contribution to g potentially important if the unknown A�10�

1
is unexpectedly large, though this seems unlikely. To get a
feeling for its possible impact we use a bound

 jA�10�
1 j< x (11)

with an estimate x � 3:8 [2], while awaiting a daunting
evaluation of contributions from 12 672 Feynman diagrams
that is now underway [4,32].

Also owing to the high-precision, non-QED contribu-
tions,
 

a�hadron� � 1:671 �19� � 10�12;

a�weak� � 0:030 �01� � 10�12;
(12)

must be included. Fortunately, these are small and well
understood in the context of the standard model [2,7].

The newly measured g [1], and the high-precision QED
calculation, together determine a value of � that has an
uncertainty 10 times smaller than any other method to
determine �,

 ��1�H06� � 137:035 999 710 �12� �30� �90� (13)

 � 137:035 999 710 �96� �0:70 ppb�: (14)

In the first line, the first uncertainty is from the calculated
A�8�1 and the last is from the measured g. The middle
uncertainty is from the estimated bound on the unknown
A�10�

1 in Eq. (11). It would be 8 for a bound x � 1. It is 8x
more generally, rounding to 30 for the estimate x � 3:8 [2].
Without the exact A�6�1 of Laporta and Remiddi, in Eq. (8)
and [22], numerical inaccuracy [23] would add a fourth
uncertainty (60) to the list of three in Eq. (13).

The best determinations of � are compared in Fig. 1.
The least uncertain values independent of the electron g
[5,6]

 ��1�Cs06� � 137:036 000 00 �110� �8:0 ppb�; (15)

 ��1�Rb06� � 137:035 998 78 �91� �6:7 ppb�; (16)

rely upon many experiments, including the measured
Rydberg constant [37], the Cs or Rb mass in amu [38],
and the electron mass in amu [39,40]. The needed @=M�Cs�
comes from an optical measurement of the Cs D1 line
[6,41], and the ‘‘preliminary’’ recoil shift for a Cs atom
in an atom interferometer [42]. The needed @=M�Rb� come
from a measurement of an atom recoil of a Rb atom in an
optical lattice [5].

The most stringent test of QED comes from comparing
the � from g and QED, with the independent values

 ��1�Cs� � ��1�H06� � 0:29 �1:10� � 10�6; (17)

 ��1�Rb� � ��1�H06� � �0:93 �0:92� � 10�6: (18)

Good agreement, within 0.3 and 1.0 standard deviations,
respectively, gives no indication of a QED breakdown.
Equivalent comparisons of measured and ‘‘calculated’’
magnetic moments (the latter using a measured � as an
input),

 a�Cs06� � a�H06� � �2:5 �9:3� � 10�12; (19)

 a�Rb06� � a�H06� � 7:9 �7:7� � 10�12; (20)

are traditionally used for the QED test, and for limits on
electron substructure [8]. The uncertainties in the compari-
sons come entirely from ��Cs� and ��Rb�, better measure-
ments of which are badly needed. The much smaller
uncertainties in the measured g and QED would allow a
10 times more stringent test of QED.

Comparing experiment and theory probes for possible
electron substructure at an energy scale one might only
expect from a large accelerator. An electron whose con-
stituents would have massm
 � m has a natural size scale,
R � @=�m
c�. The simplest analysis of the resulting mag-
netic moment [8] gives �a�m=m
, suggesting that m
 >
34 000 TeV=c2 and R< 6� 10�24 m. This would be an
incredible limit, since the largest e�e� collider (LEP)
probes for a contact interaction at an E � 10:3 TeV [43],
with R< �@c�=E � 2� 10�20 m.

However, the simplest argument also implies that the
first-order contribution to the electron self-energy goes as
m
 [8]. Without heroic fine tuning (e.g., the bare mass
canceling this contribution to produce the small electron
mass) some internal symmetry of the electron model must
suppress both mass and moment. For example, a chirally
invariant model [8], leads to �a� �m=m
�2. In this case,
m
 > 130 GeV=c2 and R< 1� 10�18 m. These limits
seem remarkable for an experiment carried out at
100 mK, although they do not compete with LEP. If this
test was limited only by the experimental uncertainty in a,
then we could set a limit m
 > 600 GeV.

What theory improvements might be expected in the
future? The theory contribution to the uncertainty in the
new � is already less than that from experiment by a factor
of 3. The eighth-order uncertainty in A�8�1 can be reduced
with the accumulation of better statistics in the numerical
evaluation of integrals. Ambitious efforts underway aim
for a complete analytic evaluation, thereby entirely remov-
ing this uncertainty [44]. A calculation of the tenth-order
coefficient, A�10�

1 , is needed if an � with smaller uncertain-
ties is ever to be deduced from a better g. The evaluation is
a formidable challenge given the mentioned contributions
from 12 672 Feynman diagrams. Considerable progress in
setting up and integrating many of these diagrams has been
reported [32,45]. It now seems feasible to evaluate A�10�

1 to
a few percent.
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What experimental improvements can be expected?
Experiments underway aim to substantially reduce the
uncertainty in atom-recoil measurements that currently
contribute the largest uncertainty to independent determi-
nations of � [46,47]. The preceding Letter [1] mentions
new methods that may further reduce the uncertainty in the
electron g. This fully quantum measurement has only been
recently realized, so much remains to be explored and
optimized.

In conclusion, the fine structure constant is determined
with much smaller uncertainty than in the past by a new
measurement of the electron g and improved QED theory.
The absence of electron substructure is assumed, and only
small corrections for short-distance scale physics are
needed. The new � has a 10 times smaller uncertainty
than that from any other method. Comparing the � from
g and QED, to the� determined independently with Cs and
Rb, shows that QED continues to be a superb description of
the interaction of light and matter. A QED test that is 10
times more stringent is possible with the current uncertain-
ties in g and the QED calculation, if ever an � independent
of g is determined with the uncertainty reported here.
Comparing the measured and calculated g sets a limit on
possible electric substructure at the 130 GeV level, again
limited by the uncertainty in independent determinations
of �, not by uncertainties in g or QED calculations.
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