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The impossibility of perfect cloning and state estimation are two fundamental results in quantum
mechanics. It has been conjectured that quantum cloning becomes equivalent to state estimation in the
asymptotic regime where the number of clones tends to infinity. We prove this conjecture using two known
results of quantum information theory: the monogamy of quantum correlations and the properties of
entanglement breaking channels.
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The impossibility of perfect state estimation is a major
consequence of the nonorthogonality of quantum states:
The state of a single quantum system cannot be perfectly
measured. In other words, a measurement on a system in
order to acquire information on its quantum state perturbs
the system itself. The full reconstruction of the state is
possible only by computing statistical averages of different
observables on a large number of identically prepared
systems. Thus, any measurement at the single-copy level
provides only partial information.

The fact that state estimation is, in general, imperfect
leads in a natural way to the problem of building optimal
measurements. A perfect reconstruction being impossible,
it is relevant to find the measurement strategy that max-
imizes the gain of information about the unknown state. A
standard approach to this problem in quantum information
theory (QIT) is to quantify the quality of a measurement by
means of the so-called fidelity [1]. This quantity is defined
as follows. Consider the situation in which a quantum state
j i is chosen from the ensemble fpi; j iig; i.e., j i can be
equal to j ii with probability pi. A measurement, defined
by NM positive operators Mj � 0, summing up to the
identity

P
jMj � 1, is applied on this unknown state. For

each obtained outcome j, a guess j�ji for the input state is
made. The overlap between the guessed state and the input
state jh ij�jij

2 quantifies the quality of the estimation
process. The averaged fidelity of the measurement then
reads

 

�FM �
X

i;j

pi tr�Mjj iih ij�jh ij�jij
2: (1)

A measurement is optimal according to the fidelity crite-
rion when it provides the largest possible value of �FM,
denoted in what follows by FM.

The no-cloning theorem [2], one of the cornerstones of
QIT [3], represents another known consequence of the
nonorthogonality of quantum states. It proves that, given
a quantum system in an unknown state j i, it is impossible
to design a device producing two identical copies j ij i.
Indeed, two nonorthogonal quantum states suffice to prove
the no-cloning theorem.

As happens for state estimation, the impossibility of
perfect cloning leads to the characterization of optimal
cloning machines [4]. In this case, one looks for the quan-
tum map L that, given a state j i chosen from an ensemble
fpi; j iig in Cd, produces a state L� � � �C1...CN in
�Cd��N , such that each individual clone �Ck� tr �k��C1...CN �

resembles as much as possible the input state. Here �k
denotes the complement of k, so tr �k is the trace with respect
to all the systems Ci but Ck. The average fidelity of the
cloning process is then

 

�F C�N� �
X

i;k

pi
1

N
h ijtr �kL� i�j ii: (2)

The goal of the optimal machine is to maximize this
quantity, this optimal value being denoted by FC�N�.

One can easily realize that the no-cloning theorem and
the impossibility of perfect state estimation are closely
related. On the one hand, if perfect state estimation were
possible, one could use it to prepare any number of clones
of a given state, just by measurement and preparation. On
the other hand, if perfect cloning were possible, one could
perfectly estimate the unknown state of a quantum system
by preparing infinite clones of it and then measuring them.
Beyond these qualitative arguments, the connection be-
tween state estimation and cloning was strengthened in
Refs. [5,6]. The results of these works suggested that
asymptotic cloning, i.e., the optimal cloning process
whenN ! 1, is equivalent to state estimation, in the sense
that, for any ensemble of states,

 FC � FC�N ! 1� � FM: (3)

Actually, this equality was proven in Ref. [6] for the case of
universal cloning, that is, when the initial ensemble con-
sists of a randomly chosen pure state in Cd, under the
assumption that the output of the cloning machine is
supported on the symmetric subspace. Later, it was shown
in Ref. [7] that this assumption does not imply any loss of
optimality, so the equality of the two fidelitites for univer-
sal cloning and state estimation followed. This equivalence
has also been proven for phase covariant qubit cloning [8],
where the initial ensemble corresponds to a state in C2
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lying on one of the equators of the Bloch sphere. Since
then, the validity of this equality for any ensemble has been
conjectured and, indeed, has been identified as one of the
open problems in QIT [9].

In this work, we show that the fidelities of optimal
asymptotic cloning and of state estimation are indeed equal
for any initial ensemble of pure states. Actually, we prove
that asymptotic cloning does effectively correspond to state
estimation, from which the equality of the two fidelities
automatically follows. The proof of this equivalence is
based on two known results of QIT: the monogamy of
quantum correlations and the properties of the so-called
entanglement breaking channels (EBC).

It is easy to prove that FM � FC. Indeed, given the
initial state j i, a possible asymptotic cloning map, not
necessarily optimal, consists of first applying state estima-
tion and then preparing infinite copies of the guessed state.
It is sometimes said that the opposite has to be true since
‘‘asymptotic cloning cannot represent a way of circum-
venting optimal state estimation.’’ As already mentioned in
Ref. [9], this reasoning is too naive, since it neglects the
role correlations play in state estimation. For instance, take
the simplest case of universal cloning of a qubit, i.e., a state
in C2 isotropically distributed over the Bloch sphere. The
optimal cloning machines produces N approximate clones
pointing in the same direction in the Bloch sphere as the
input state, but with a shrunk Bloch vector [7]. If the output
of the asymptotic cloning machine were in a product form,
it would be possible to perfectly estimate the direction of
the local Bloch vector, whatever the shrinking was. Then a
perfect estimation of the initial state would be possible.
And, of course, after the perfect estimation, one could
prepare an infinite number of perfect clones. This simple
reasoning shows that the correlations between the clones
play an important role in the discussion. Actually, it has
recently been shown that the correlations present in the
output of the universal cloning machine are the worst for
the estimation of the reduced density matrix [10].

As announced, the proof of the conjecture is based on
two known results of QIT: the monogamy of entanglement
and the properties of EBC. For the sake of completeness,
we state here these results, without proof.

Quantum correlations, or entanglement, represent a mo-
nogamous resource, in the sense that they cannot be arbi-
trarily shared. One of the strongest results in this direction
was obtained by Werner in 1989 [11]. There, it was shown
that the only states that can be arbitrarily shared are the
separable ones. Recall that a bipartite quantum state �AC in
Cd � Cd is said to be N-shareable when it is possible to
find a quantum state �AC1...CN in Cd � �Cd��N such that
�ACk � tr �k�AC1...CN � �AC, 8 k. The state �AC1...CN is then
said to be an N extension of �AC. The initial correlations
between subsystems A and C are now shared between A
and each of the N subsystems Ci; see Fig. 1. It is straight-
forward to see that

 �AC1...CN �
X

i

qij�iih�ij � j�iih�ij
�N (4)

gives a valid N extension of a separable state �sAC �P
iqij�iih�ij � j�iih�ij for all N. As proven by Werner,

if a state �AC is entangled, there exists a finite number
N��AC� such that no valid extension can be found.

The second ingredient needed in what follows are the
properties of EBC. A channel � is said to be entanglement
breaking when it cannot be used to distribute entangle-
ment. In Ref. [12], it was proven that the following three
statements are equivalent: (i) � is entanglement breaking,
(ii) � can be written in the form

 ���� �
X

j

tr�Mj���j; (5)

where �j are quantum states and fMjg defines a measure-
ment, and (iii) �1 ���j��i is a separable state, where
j��i �

P
ijiii=

���
d
p

is a maximally entangled state in Cd �
Cd. The equivalence of (i) and (ii) simply means that any
EBC can be understood as the measurement of the input
state �, followed by the preparation of a new state �j
depending on the obtained outcome. The equivalence of
(i) and (iii) reflects that the intuitive strategy for entangle-
ment distribution where half of a maximally entangled
state is sent through the channel is enough to detect if �
is entanglement breaking.

After collecting all these results, we are now ready to
prove the following.

Theorem.—Asymptotic cloning corresponds to state es-
timation. Thus, FM � FC for any ensemble of states.

Proof.— First of all, note that, for any number of clones,
we can restrict our considerations to symmetric cloning
machines Ls

N , where the N clones are all in the same state.
Indeed, given a machine where this is not the case, one can
construct a symmetric machine achieving the same fidelity
FC�N�, just by making a convex combination of all the
permutations of the N clones [13]. Now denote by Lc

N the
effective cloning map consisting of, first, the application of
a symmetric machine Ls

N and then tracing all but one of the
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FIG. 1. The state �AC is said to be N-shareable when there
exists a global state �AC1...CN such that the local state shared
between A and Ci is equal to �AC, for all i.
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clones, say the first one. The N-cloning problem can be
rephrased as [see Eq. (2)]

 max
Lc
N

X

i

pih ijL
c
N� i�j ii: (6)

Note that this maximization runs over all channels that can
be written as Lc

N � tr�1L
s
N . For instance, the identity map,

where  !  ,8  , does not satisfy this constraint. Denote
by LN the set of these channels. These are convex sets such
that LN 	 LN�1 	 . . . 	 L1. The key point of the proof is
to show that all the channels in L1, and therefore all the
channels associated to asymptotic cloning machines, are
EBC. To prove this result, we proceed by contradiction.

First, note that any EBC belongs to L1. Assume now
there is a channel Lc

1 2 L1 which is not EBC, i.e., such
that the state

 �AC � �1 �Lc
1�j�

�i (7)

is entangled. Since LN 	 L1 for allN, Lc
1 is an element of

all these sets. Thus, for any finite N, there exists a sym-
metric channel Ls

N such that

 �AC1...CN � �1 �Ls
N�j�

�i (8)

is a valid N extension of the entangled state �AC of Eq. (7).
But this is in contradiction with the nonshareability of
entangled states. Thus, all the channels in L1 have to be
EBC. Since any EBC can be seen as measurement followed
by state preparation, asymptotic quantum cloning, i.e.,
Eq. (6) in the limit N ! 1, can be written as [14]

 max
fMj;�jg

X

i;j

pi tr�Mjj iih ij�jh ij�jij
2; (9)

which defines the optimal state estimation problem.
Therefore, FM � FC for any ensemble of states. �

The same argument applies to the case in which K
copies of the initial state j i are given. The measurement
and cloning fidelities now read [see Eqs. (1) and (2)]
 

�FM�L� �
X

i;j

pi tr�Mjj iih ij
�K�jh ij�jij

2 �FC�N;K�

�
X

i;k

pi
1

N
h ijtr �kL� 

�K
i �j ii: (10)

Using the same ideas as in the previous theorem, it is
straightforward to prove that

 FM�K� � FC�N ! 1; K�; (11)

where FM�K� and FC�N;K� denote the optimal values of
�FM�K� and �FC�N;K�, as above.

One can also extend this result to asymmetric scenarios.
An asymmetric cloning machine [15] produces NA clones
of fidelity FC�NA� and NB clones of fidelity FC�NB� of a
state chosen from an ensemble fpi; j iig, the total number
of clones being N � NA � NB. The machine is optimal
when it gives the largest FC�NA� for fixed FC�NB�.
Extending the previous formalism, this optimal fidelity is

then

 FC�NA� � max
LNA;NB

X

i

pih ijtr�1LNA;NB� i�j ii; (12)

where the maximization now runs over all maps Cd !
�Cd��N , symmetric under permutation among the first NA
clones or among the NB clones, and such that

 

X

i

pih ijtr �NLNA;NB� i�j ii � FC�NB�: (13)

In the case of measurement, we are thinking of mea-
surement strategies where the goal is to obtain information
on an unknown state introducing the minimal disturbance.
As above, we consider that a guess j�ji for the input state
is done depending on the measurement outcome j. The
information vs disturbance trade-off can be expressed in
terms of fidelities [16]: The information gain is given by
the overlap G between the initial and the guessed state,
while the disturbance is quantified by the overlap F be-
tween the state after the measurement and the initial state.
The whole process can be seen as a global map M trans-
forming the initial state into two approximate copies of it:
the state left after the measurement and the guessed state. A
measurement is optimal when for fixed gain G it provides
the minimal disturbance, i.e., the largest overlap F. So, the
goal is to solve

 max
M

X

i

pih ijtr2M� i�j ii; (14)

where the maximization is over all channels M such that
tr1M defines an EBC (5) with �j � j�jih�jj [14] andP
ipih ijtr1M� i�j ii � G. The optimal trade-off be-

tween F and G is known only for the case in which the
input ensemble consists of any pure state in Cd with
uniform probability [16].

As happens for the symmetric case, a connection be-
tween this state estimation problem and asymmetric clon-
ing machines can be expected when NA � 1 and NB ! 1.
Note that the previous measurement strategy gives a pos-
sible realization of an asymmetric cloning machine, not
necessarily optimal, when NB identical copies of the
guessed state are prepared. In other words, if G �
FC�NB�, then F � FC�NA�. Actually, this connection is
indeed true for the particular case in which the input state
is any pure state in C2, isotropically distributed on the
Bloch sphere: The optimal measurement strategy of
Ref. [16] turns out to saturate the optimal cloning 1!
NA � NB fidelities of Ref. [17], when NA � 1 and NB !
1. Now the equality between the measurement and asymp-
totic cloning fidelities in the asymmetric scenario can be
proven in full generality exploiting the same arguments as
above. Using the monogamy of entangled states, one can
see that the channels (13), defining the NB ! 1 clones,
must be EBC. This means that the set of maps L1;NB and
M corresponding to asymmetric 1! 1� NB cloning ma-
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chines and asymmetric measurement strategies [see
Eqs. (12) and (14)] coincide when NB ! 1. Therefore,
the two corresponding fidelities have to be equal.

From a more speculative point of view, there exist
several works relating the impossibility of perfect cloning
to the no-signaling principle, e.g. Ref. [18]. Most of these
works, however, study the relation between these two
principles inside the quantum formalism. Recently, a
form of no-cloning theorem has been derived just from
the no-signaling principle, without invoking any additional
quantum feature [19]. In view of the strong connection
between cloning and state estimation, it would be inter-
esting to study whether a similar link could also be estab-
lished between the no-signaling principle and the impos-
sibility of perfect state estimation, without exploiting any
intrinsically quantum property such as nonorthogonality.

To conclude, this work proves the long-standing con-
jecture on the equivalence between asymptotic cloning and
state estimation. It represents the strongest link between
two fundamental no-go theorems of quantum mechanics,
namely, the impossibilities of perfect cloning and state
estimation.
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