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A general approach to calculate the diabatic surfaces for electron-transfer reactions is presented, based
on first-principles molecular dynamics of the active centers and their surrounding medium. The excitation
energy corresponding to the transfer of an electron at any given ionic configuration (the Marcus energy
gap) is accurately assessed within ground-state density-functional theory via a novel penalty functional for
oxidation-reduction reactions that appropriately acts on the electronic degrees of freedom alone. The self-
interaction error intrinsic to common exchange-correlation functionals is also corrected by the same
penalty functional. The diabatic free-energy surfaces are then constructed from umbrella sampling on
large ensembles of configurations. As a paradigmatic case study, the self-exchange reaction between
ferrous and ferric ions in water is studied in detail.
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A wide variety of processes and reactions in electro-
chemistry, molecular electronics, and biochemistry have a
common denominator: they involve a diabatic electron-
transfer process from a donor to an acceptor [1]. These
reactions cover processes and applications as diverse as
solar-energy conversion in the early steps of photosyn-
thesis, oxidation-reduction reactions between a metallic
electrode and solvated ions, and the I-V characteristics of
molecular-electronics devices [2]. The key quantities of
interest are the reaction rates (or, equivalently, the con-
ductance) and the reaction pathways. Reaction rates, in the
general scenario of Marcus theory [3–5], have a thermo-
dynamic contribution (the classical Franck-Condon factor,
broadly related to the free-energy cost of a nuclear fluc-
tuation that makes the donor and the acceptor levels de-
generate in energy), and an electronic structure, tunneling
contribution (the Landau-Zener term, related to the overlap
of the initial and final states).

We argue in the following that state-of-the-art first-
principles molecular dynamics calculations, together with
several algorithmic and conceptual advances, are able to
describe with quantitative accuracy these diabatic pro-
cesses, while including the realistic description of the
complex environment encountered, e.g., in nanoscale de-
vices or at the interface between molecules and metals.

Figure 1 shows schematically an electron-transfer pro-
cess and the free-energy diabatic surfaces according to the
picture that was pioneered by Marcus [3,4,6,7]. In a polar
solvent, the electron-transfer process is mediated by ther-
mal fluctuations of the solvent molecules. In the reactant
state, the transferring electron is trapped at the donor site
by solvent polarization; transfer might occur when the
electron donor and acceptor sites become degenerate due
to the thermal fluctuations of the solvent molecules. To
characterize the role of the solvent on the electron-transfer
reaction, a reaction coordinate � for a given ionic configu-
ration is introduced, as the energy difference between the

product and reactant state at that configuration [8]. This
definition of reaction coordinate captures the collective
contributions from the solvent.

There have been a number of pioneering classical mo-
lecular dynamic studies [5,9,10] studying the reactions
between aqueous metal ions. However, quantitative agree-
ment has not been achieved with classical force fields. The
reorganization energy � (i.e., the free-energy cost to reor-
ganize the solvent molecules from the configurations at
equilibrium with the product to the configurations at equi-
librium with the reactant without electron transfer) for the
aqueous Fe2�-Fe3� self-exchange reaction was found to be
3.6 eV for ions 5.5 Å apart [10], while experimentally [11]
(at the slightly shorter separation of 5.32 Å) it is found to be
2.1 eV. Although there have been studies of electron-
transfer reactions including electronic polarization in clas-
sical force-field potentials [12,13], full first-principles
studies are required to describe realistically and quantita-
tively these reactions. Recently, an elegant grand-canonical
density-functional approach has been introduced to ad-
dress this class of problems [14,15]. This approach is,

FIG. 1 (color online). Diabatic free-energy surfaces for
ferrous-ferric electron-transfer reactions. �G is the free-energy
barrier, and � is the reorganization energy. The reaction coor-
dinate � is the Marcus energy gap.
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however, targeted at half reactions for a donor or an
acceptor in contact with an electron reservoir.

In this Letter, we present a novel technique to study
electron-transfer reactions from first-principles molecular
dynamics, with ferrous-ferric self-exchange as a paradig-
matic example. We use Car-Parrinello molecular dynamics
[16,17] and spin-polarized density-functional theory in the
Perdew-Burke-Ernzerhof generalized gradient approxima-
tion (PBE-GGA) approximation [18]. Figure 2 shows sche-
matically the sampling procedure used, following the lines
of Ref. [10] for classical simulations. An ionic trajectory is
first generated with the ions in the (2� r) and (3� r)
states of charge, respectively. r is an ‘‘umbrella-sampling’’
parameter used to explore different regions of the phase
space. We then perform two separate runs with the elec-
tronic state constrained in the reactant or in the product
configuration, and with the ions following the afore-
generated ionic trajectories. The reaction coordinate � at
every time step is thus given by the difference between the
energies of the product and the reactant state. The proba-
bility distribution P��� is then calculated as:

 P��� �

P
� ��0���;� expf���Er��� � Es����gP

� expf���Er��� � Es����g
; (1)

where �0��� � Ep��� � Er��� is the reaction coordinate at
time �; Er���, Ep���, and Es��� are the energies of the
system in the reactant, product, and sampling oxidation
states, respectively, at time �, and ��0���;� is the Kronecker
delta. The exponential term in the expression above re-
stores the correct thermodynamical sampling according to
the energy surface Er. The free-energy G��� is derived
from the probability distribution P��� as G��� �
�kBT ln�P����.

It is of central importance to note that due to the lack of
self-interaction correction in common exchange-
correlation functionals, the transferring (3d minority-
spin) electron will unphysically split between the two
ions. Moreover, to calculate the energy gap, we need to
accurately calculate the total energy when the minority-
spin electron localizes at either reactant or product site at
any given ionic configuration.

In order to address these central problems, we first
consider the simple case when oxidation states can be
controlled trivially. This happens when two ions are infi-
nitely apart; the two ions can be studied in separate simu-
lation cells and the oxidation states are controlled by
simply changing the total number of electrons. For this
special case, we performed runs using Fe�2�r�� and
Fe�3�r�� (with r � 0:0, 0.25, 0.50, 0.75, and 1.0), each
solvated with 31 water molecules in the unit cell. We
then carried out one Fe2� and one Fe3� run in the trajec-
tory generated with Fe�2�r��, and one Fe2� and one Fe3�

run in the trajectory generated with Fe�3�r��. [When cal-
culating energies of charged systems in periodic-boundary
conditions, the Coulomb interaction of charges with their
periodic images should be removed [19]. In practice, these
errors cancel out when calculating the energy gap, which is
the difference in energy between systems with the same
charge.]

Figure 3 shows the resulting diabatic surfaces; the final
result is obtained by integrating [20]

 F��� �

P
r Fr���gr���P

r gr���
; (2)

where Fr��� is the slope of the free-energy curve in the
different sections, each characterized by an umbrella-
sampling parameter r, and the weighting factor gr��� is
h���� �����ir. Each simulation lasted 5 ps after accurate
thermalization. For this special case, the trajectories gen-

FIG. 2 (color online). Procedure used to calculate the diabatic
free-energy surfaces for electron transfer: The reaction coordi-
nate at each time step is calculated from the energy difference
between the product and reactant states in the ionic configuration
provided by the sampling run. The phase space is explored via
the umbrella-sampling parameter r, determining the oxidation
state of the ions.

-3 -2 -1 0 1 2 3
Reaction coordinate (eV)

0

1

2

3

4

Fr
ee

 e
ne

rg
y 

(e
V

)

r=0r=0.25r=0.5r=0.75r=1

FIG. 3 (color online). Diabatic free-energy surface for ferrous-
ferric electron transfer in the special case when two ions are
infinitely apart. The solid curve has been obtained from first-
principles molecular dynamics. The dashed curves are mirror
images, and correspond to a parabolic fit of the data. Different
shades indicate portions of the diabatic surface sampled with r �
0, 0.25, 0.5, 0.75, and 1.
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erated with Fe�2�r�� and Fe�3�r�� are independent; since
each of them provides n data points, there will be n2 energy
gaps, providing high statistics and a very smooth free-
energy curve that fits accurately a parabola, with a coeffi-
cient of determination (R2) of 0.9996, and a reorganization
energy of 1.77 eV.

As mentioned earlier, the self-interaction errors of most
exchange-correlation functionals result in a dramatic quali-
tative failure in describing ions in different oxidation states
when more than one ion is present. This failure can be
exemplified by the case of two iron ions in the 2� and 3�
oxidation state. When such a system is studied—e.g. using
PBE-GGA—the highest occupied molecular orbital
(HOMO) electron will split between the two iron centers,
to decrease its own self-interaction. This behavior takes
place irrespective of the chemical environment of the two
iron centers; we observe it for two isolated atoms, two
hexa-aqua iron complexes, or two ions fully solvated.

We will show in the following that this failure can be
corrected by adding a penalty cost to ground states with
noninteger occupation of the ion centers [21]. This same
approach is also used to calculate the Marcus energy gap,
where for a given configuration we need to determine both
the correct ground-state energy (with the transferring elec-
tron in the reactant electronic configuration) and the first
excited state (with the transferring electron in the product
electronic configuration). We use and validate the follow-
ing penalty functional

 E�f ig� ! E�f ig� �
X
I

PI

�I
�������
2�
p

Z fI0�f
I
f ig

�1
exp

�
�

x2

2�2
I

�
dx;

(3)

where fI
f ig

is the largest eigenvalue of the minority-spin
occupation matrix on ion I (calculated in this work by
projecting the minority-spin Kohn-Sham orbitals on the
3d orbitals of an isolated iron atom), and fI0 is its target
value. To determine the optimal parameters, we separately
calculated the minority-spin occupation matrix for either a
ferrous or ferric hexa-aqua ion embedded in a dielectric
continuum (� � 78) [22]. Then, we determine the parame-
ters in the penalty functional so that the occupation matri-
ces of the ferrous or ferric clusters are accurately
reproduced once the two are studied in the same unit cell
(PI � 0:54 eV, fI0 � 0:95, and �I � 0:01 on the ferrous
ion and PI � �0:54 eV, fI0 � 0:28, and �I � 0:01 on the
ferric ion). We note that the target occupations for the
minority-spin are not chosen exactly one or zero, since
the orbital hybridization between the iron 3d orbitals and
the lone pairs of the water molecules contributes to the
projection onto atomic orbitals (an alternative would be to
use projections onto the 3d orbitals or the maximally
localized Wannier functions of a solvated iron ion, instead
of an isolated atom). When calculating the energy gap, the
penalty-functional contributions are taken away from the
total energy; in any case, these effects are negligible since
these contributions cancel out when calculating energy

differences. Different constraints or penalties have been
proposed for density-functional calculations [23–27]; we
found our choice particularly robust, but several variations
on the theme can be envisioned.

A first, qualitative validation of this penalty functional is
performed examining the charge density obtained by sub-
tracting from a calculation with a ferrous and a ferric hexa-
aqua ion in the same unit cell that of an isolated ferrous
hexa-aqua ion, and that of a ferric hexa-aqua ion (a dielec-
tric continuum surrounds the two clusters to remove long-
range electrostatic interactions between them). When the
penalty functional is applied, the charge density around the
ions reorganizes itself so that it produces a charge density
that is the exact superposition of that obtained from the two
independent calculations.

We can make our validation quantitative by calculating
the energy gap for the system described, using two differ-
ent penalty-functional calculations that impose to the
HOMO electron to localize first on one, then on the other
ion. This energy gap can also be calculated exactly with
PBE-GGA using the ‘‘4-point’’ approach [28], provided
that all long-range electrostatic interactions are screened
out. The four calculations involve Fe2� in two Fe�H2O�6
geometries (A and B), and Fe3� in the same geometries;
the energy gap is [EA�Fe2�� � EB�Fe3�� � EB�Fe2�� �
EA�Fe3��]. We choose one configuration in which the
hexa-aqua ions are fully relaxed, and three carved out
from random steps in the molecular dynamics simulations.
The energy gaps we obtained with the penalty functional
are 0.632, 0.569, 0.769, and 1.027 eV, in excellent agree-
ment with the ‘‘4-point’’ values of 0.622, 0.542, 0.769, and
1.012 eV. It is worth mentioning that the energy gap is an
excited-state property of the system, and thus in principle
outside the scope of density-functional theory, which is a
ground-state theory. However, since the charge densities of
the HOMO and lowest unoccupied molecular orbital
(LUMO) do not overlap, we can argue that all that is
required is a description of the charge density that is locally
correct (the excited state has an electron locally in equi-
librium around an iron, oblivious of the other iron ion
where it could sit more favorably).

With these tools, we determined the diabatic free-energy
surfaces for two iron ions separated by 5.5 Å and solvated
in 62 water molecules, in periodic-boundary conditions.
5.5 Å was suggested [4,29] to be the optimal distance for
electron transfer. We show our results in Fig. 4, together
with a parabolic fit to the data. The reorganization energy
(�) that we obtain is 2.0 eV [30], in excellent agreement
with the experimental value of 2.1 eV [11]. The energy
barrier �G � 0:49 eV, about a quarter of �, as expected.
We also note that since the structural and electronic con-
figurations of all microstates are available, reaction mecha-
nism (e.g. inner versus outer sphere transfer) can be
analyzed in detail by restricting the analysis to all configu-
rations that have a Marcus gap close to zero. Bond-
breaking and bond-forming reactions can be followed in
detail, or protons can be explicitly introduced [31].
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In conclusion, we have demonstrated how it is possible
to obtain Marcus diabatic surfaces from first-principles
molecular dynamics. The case when two ions are at a finite
distance requires special care in dealing with self-
interaction errors and excited-state energies. In response
to these challenges, we developed and validated a penalty
functional that is able to control the oxidation states of
ions, and that describes accurately both the electronic
ground state and the first excited state where the electron
is transferred to the other ion. This approach can be suc-
cessfully applied to a wide class of oxidation-reduction
reactions, in solution (as it often happens in electrochem-
istry or biochemistry) or in the solid-state (intervalence
charge-transfer).
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FIG. 4 (color online). Diabatic free-energy surface for ferrous-
ferric electron transfer when the two ions are 5.5 Å apart.
Different color shades indicate portions of the diabatic surface
sampled r � 0, 0.5, and 1. The right dashed curve is the
parabolic fit of the data and the left dashed curve its mirror
image.
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