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We investigated vortex-lattice dynamics in superconducting Nb thin films with different quasiperiodic
arrays of magnetic pinning centers. The mixed-state magnetoresistance exhibits minima for well-defined
applied fields, related to matching effects between the vortex lattice and those arrays. The results show
that critical matching can originate at a local scale. For fractal arrays, the vortex-lattice correlation length
is longer and the minima are deeper, close to those of periodic arrays.
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Vortex lattices (VLs) in type-II superconductors with
periodic artificial pinning are useful for the study of the
general problem of interacting ‘‘particles’’ moving in pe-
riodic potentials [1]. Among others, vortex dynamics has
much in common with the dynamics of colloids [2], charge
density waves [3], or Wigner crystals [4]. Commen-
surability between the VL and periodic pinning potentials
leads to dramatic effects including enhanced pinning [5,6]
and changes in the VL geometry [7]. Elasticity and
correlation lengths are intimately related to these effects
and are common ingredients to the general problem of
commensurability.

Quasiperiodic (QP) potentials have received increasing
attention since the discovery of quasicrystals [8]. Electrons
[9] and atoms in QP potentials [10] have been investigated.
A long-standing issue is whether commensurate states may
exist on QP substrates [11]. Early experiments investigated
flux quantization in quasicrystalline [12] and fractal [13]
superconducting networks. Critical temperature oscilla-
tions as a function of applied field and recent numerical
simulations of VL pinning by QP arrays [14] indicate some
kind of ‘‘commensurability.’’ The latter would manifest as
peaks in the field dependence of the critical depinning
current.

Here we present an experimental study of the interaction
between the VL and two different QP arrays of magnetic
pinning centers: a 2D Fibonacci and a pentagonal self-
similar fractal array. Comparison between both is interest-
ing because of their different orientational order. More-
over, as opposed to the Fibonacci or Penrose arrays [14],
the pentagonal array has fractal structure and exhibits
‘‘periodic inflation’’ symmetry: i.e., at any length scale
(larger than the nearest neighbor distance), there is some
portion which generates the whole array by repetition.
Thus, the QP pentagonal array has some similarities also
with periodic arrays.

We found minima in the mixed-state magnetoresistance
that reveal matching effects between the VL and both QP
potentials, reminiscent of those observed for periodic ar-
rays, although they appear here in a nonperiodic series.
Matching between the VL and the QP potential originates

at a local scale for the Fibonacci array. The minima are
deeper in the pentagonal than in the Fibonacci array,
indicating that this fractal structure yields larger VL
correlations.

Magnetic dot (Ni) arrays were prepared using a combi-
nation of e-beam lithography and sputtering [15]. Dots
(40 nm height, [ � 280� 10 nm diameter) were covered
by a 100 nm thick Nb thin film. This type of magnetic dots
effectively pins superconducting vortices in Nb due to
proximity effects and magnetic interactions [6]. A standard
four-probe was defined by optical lithography and reactive
ion etching, of total area 40� 40 �m2. The superconduct-
ing critical temperature was Tc � 7:50 K (Tc � 7:68 K)
for sample A (B). The mixed-state dc magnetoresistance
was measured with the magnetic field B applied perpen-
dicular to the film plane.

Sample A has a 2D Fibonacci array [Fig. 1(a)] con-
structed by applying iteratively the Fibonacci rule [14]
to the line segments a and a� [a � 395 nm and
� � �1�

���
5
p
�=2 � 1:618, the golden ratio], along the x

and y axes. Thus, the distances between magnetic dots
along these two directions follow the Fibonacci sequence
a; a�; a; a�; a� . . . , etc. The array of sample B [Fig. 1(c)] is
generated from a pentagon of side a as the basic unit by
performing an inflation operation: six pentagons [solid
(blue) in Fig. 1(c)] arranged by locating five of them on
the sides of the central sixth result in a scaled-up pentagon
[hollow (red) in Fig. 1(c)]. To expand the array, the in-
flation operation is applied iteratively to the scaled-up
pentagons. The sides of the pentagons grow as a�1� ���

and the sample contains a total of 6� basic units (� is an
integer, the ‘‘order’’ of the inflation). Note that pentagons
are not space filling: For every six pentagons forming a
scaled-up unit, five isosceles triangles fill the space left
between the external ones.

The spectra of distances between dots were obtained
using scanning electron microscopy. For sample A
[Fig. 1(b)], some of the distances (black peaks) correspond
to the basic lengths (a, a�) or their linear combinations
a�k� l�� (with k, l integers). Note that not all linear
combinations are found in the Fibonacci array. The other
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distances correspond to the diagonals of the different rec-
tangles a�k� l�� � a�k0 � l0�� found in the array. The
area below each peak is proportional to the number of
times that the corresponding rectangle is repeated in the
array. The spectrum for sample B [Fig. 1(d)] contains,
besides the distance corresponding to sides of the basic
pentagons (a) and the first scaled-up one [a�1� ��], many
others [unlabeled in Fig. 1(d)] that are irrelevant in the
present experiments.

The magnetoresistances of A and B are shown in
Figs. 2(a) and 3(a) respectively. Both exhibit mixed-
state magnetoresistance minima, implying enhanced VL
pinning for well-defined applied fields (i.e., vortex den-
sities). The common behavior of the two samples is
(i) nonperiodic series of minima and (ii) the series of
minima unrelated to the mean density of pinning sites in
the array, but related to the mean densities of certain
‘‘sublattices’’ of the array. Besides the particular matching
fields, the behavior of these two samples is different in two
remarkable ways: symmetric (i.e., similar magnetoresis-
tance for positive and negative fields) or strongly asym-
metric background dissipation for the pentagonal (B) [inset
in Fig. 3(a)] and the Fibonacci (A) array [Fig. 2(a)], re-
spectively. Moreover, considerably deeper minima appear
to higher fields for B, indicating stronger pinning.

Sample A exhibits a series of pronounced minima at the
main matching fields (B�) for both positive and negative
applied fields [solid vertical lines in Fig. 2(a) and its inset].
Some of the additional shallower minima are only observ-
able for positive fields. The main minima correspond to the

vortex density dv � B=�0 (B the applied field and �0 �
2:07� 10�15 Wb the flux quantum) being equal to 1=S,
where S is the area of the rectangles of the type a�k�
l�� � a�k0 � l0��. For instance, the minima at B� �
�80 G correspond to the matching of the VL to the
rectangles of area S � a� a� and B� � �50 G to the
rectangles of areas S � a�� a� and S � a� a�1� ��.
[The colors of the solid vertical lines in Fig. 2(a) corre-
spond to the colors of the peaks in the spectra in Fig. 1(b)
and identify the class of rectangles related to each match-
ing field B�.] If the ratio of the basic lengths in this array is
the golden ratio �, the ratio of the areas of any two
rectangles is S=S0 � ��=q (with � and q integers).
Therefore, the matching fields B� � �0=Si (Si the area
of rectangle i) belong to a Fibonacci series B� � B0��=�
(with � and � integers), in excellent agreement with the
experimental data [Fig. 2(b)]. A logarithmic plot of the
main matching fields as a function of order � (with an
arbitrary choice of the initial value of �) yields log�B�� �
log�B0� � � log��exp�, with �exp � 1:6, very close to the
golden ratio � � 1:618. Some of the shallower minima

FIG. 2 (color online). (a) Magnetoresistance of sample A at
T � 0:989Tc and J � 2:5 kA cm�2. Main minima are marked
with vertical solid lines [the color code corresponds to that in
Fig. 1(b)]. Minima marked with dotted black lines are within the
Fibonacci series. The larger dashed black line indicates the
matching field corresponding to the mean density of magnetic
pinning sites. Inset: Magnetoresistance of sample A at T �
0:988Tc and J � 1:7 kA cm�2. (b) Main matching fields as a
function of the order �. Same color code as in (a). The solid line
is the best fit to B� � B0�

�.

FIG. 1 (color online). (a) Electron microscopy images of sam-
ple A. (b) Spectrum of distances between dots for sample A.
Peaks in black are for a, a� and their linear combinations. The
other peaks are for diagonals of the different rectangles in the
array. (c) SEM image of sample B. A sketch of the construction
of the array (see text) is shown with higher magnification.
(d) Spectrum of distances between dots for sample B.
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[dotted black lines in Fig. 2(a)] are also contained in this
Fibonacci sequence [black dots in Fig. 2(b)]. Other shal-
lower minima correspond to subharmonics (i.e., �> 1) of
the minima in the Fibonacci series. For instance, B� �
�25 G [a subharmonic of B� � �50 G, arrows in
Fig. 2(a)] correspond to matching to the rectangle S �
a�� 2a�. Finally, some other shallow minima could not
be identified uniquely within our experimental resolution.
These results are in good agreement with numerical simu-
lations for 1D Fibonacci chains [14], where also a
Fibonacci sequence of matching fields was found. The
main difference is that here no minimum is found at the
matching field corresponding to dps � 3:2� 1012 m�2,
the mean pinning site density B � dps�0 � 66 G [vertical
dashed line in Fig. 2(a)]. Nevertheless, a calculation for a
2D Fibonacci array would be needed for better comparison
with the experiment, since the in-plane anisotropy inherent
to the 2D array may play an important role.

Sample B shows a series of deep (‘‘main’’) minima and a
number of much shallower ones between them [Fig. 3(a)].
A simple phenomenological model that mimics the experi-
mental R�B� uses the analytical expression

 R�B� � Rb�B�
�
1� A�B�

X3

i�1

Cisin2

�
B�
B�i

��
: (1)

Here Rb�B� � R0B (R0 constant) describes the back-
ground dissipation expected in the Bardeen-Stephen limit
[16]. The oscillations are simulated using three squared
sinusoidal terms with different periods B�i and spectral
weights Ci (i � 1; 2; 3). The term A�B� � A1 exp��B=A2�
(A1, A2 constants) accounts for the decreasing oscillation
amplitude as field increases. The constants in Eq. (1) ex-
cept the three periods B�i (five adjustable parameters)
were chosen so that the simulated curve [inset in
Fig. 3(b)] followed the general trends of the experimental
one [Fig. 3(a)]. B�i reveal the physics in this model and
were obtained taking into account the actual distribution of
pinning sites. The most stable vortex distribution over the
pentagons of side a�1� �� is assumed to be the one shown
as an inset in Fig. 3(b). To calculate the corresponding
matching field B�1, we considered the two types of ‘‘pla-
quettes’’ found in the array at this length scale: pentagons
of side a�1� �� and triangles of equal sides and base
a�1� ���1� ��. Vortices on the vertices and sides of these
plaquettes are shared by four and two of them, respectively,
while vortices inside the pentagons are not shared. Thus,
for this configuration the net number of vortices per penta-
gon (triangle) is Np � 8:75 (Nt � 1:75). The cor-
responding matching field is given by B�1�Np;Nt� �
�0�npNp � ntNt�=�npSp � ntSt� � 96:7 G, with Sp (St)
the area of the pentagons (triangles) and np (nt) the total
number of pentagons (triangles) in the array. B�2 and B�3

correspond to the same vortex configuration shown in
Fig. 3(b) (one vortex per vertex and side, plus five vortices
inside the pentagon) over the self-similar pentagons of side

a�1� ��2 and a�1� ��3, respectively. Thus, B� �
B�2�1� ��2 � B�3�1� ��4. Higher order terms were ex-
cluded (the size of larger scaled-up pentagons exceed the
size of the array), as well as the term for the pentagon of
side a (the corresponding matching field is of the order of
Bc2). Since the ratios between B�1, B�2, and B�3 are
irrational, these matching fields themselves do not appear
in the resulting quasiperiodic series of minima, which
reproduces with high fidelity the experimental one
[Fig. 3(b)]. Most of the experimental minima are within
�2 G of the calculated values. Only few minima in the
theoretical (experimental) series are not found experi-
mentally [(magenta) squares] and theoretically [(blue) tri-
angles], respectively.

The results for the Fibonacci array indicate that critical
matching between the VL and the array of magnetic dots
originates at a local scale. The type of rectangles respon-

FIG. 3 (color online). (a) Magnetoresistance of sample B, at
T � 0:985Tc and J � 1:5 kA cm�2. Vertical lines mark the main
minima. Inset: Same curve as in (a) zoomed out. (b) Experi-
mental matching fields (B�) vs theoretical ones [obtained with
Eq. (1)]. Black dots are for the main minima, white ones for the
shallower. Squares (magenta) are theoretical minima not found
experimentally, triangles (blue) experimental minima not found
theoretically. Inset: R�B� simulated using Eq. (1) with R0 � 3�
10�4, C1 � 1, C2 � 0:2, C3 � 0:12, A1 � 0:5, A2 � 100 G,
B�1 � 96:7, B�2 � 13:7, and B�3 � 2 G. Sketch: Distribution
of vortices (cyan circles) at B� � 96:7 G.
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sible for a particular matching field are found scattered all
over the array, leaving incommensurate spaces between
them, and only cover a fraction of the array area (e.g.,
rectangles of area S � a� a, S � a� a�, and S � a��
a� cover 16%, 48%, and 36%, respectively). The VL
matches the dot array wherever it finds one of these rec-
tangles, while vortices between distribute to keep the mean
vortex density. Thus, the VL is not regular all over the
array. On the contrary, its geometry may change over
nearest neighbor length scales, leading to a short VL
correlation length close to a few hundreds of nanometers.
This scenario is in agreement with experiments using both
periodic and strong random pinning, which exhibit critical
commensurability effects without long-range order of the
VL [17]. Local matching yields shallow minima (resistiv-
ity changes below 5%) only at low magnetic fields
[Fig. 2(a)] since matching is found repeatedly all over but
not everywhere in the array. Vortices not located on mag-
netic pins move more easily. Moreover, the large elastic
energy cost associated with irregular, nonperiodic distri-
bution of vortices, is compensated by the gain in pinning
energy coming from vortices in magnetic pinning. Since
only a fraction of the vortices in the lattice are pinned by
magnetic dots, the net pinning energy is small, leading to
shallow minima, which do not appear at higher fields,
where the elastic energy is too large and overcomes the
pinning energy.

The situation is different for the pentagonal array. Here
the magnetoresistance exhibits up to five main minima and
a resistivity change of	35% for the first one. These values
are closer to those of square arrays of same sized dots, with
four main minima and a resistivity change of	60% for the
first one [18]. Moreover, the pentagonal array exhibits self-
similar matching over three different length scales, the
larger of the order of several micrometers [a�1� ��3 �
7 �m]. This implies VL correlation lengths around 1 order
of magnitude larger than in the Fibonacci array. Since the
entire array can be generated by repetition of the matching
units (pentagons), here matching occurs everywhere over
the array, as in periodic arrays. Thus, the net pinning
energy after the cost of elastic energy is compensated is
larger that in the Fibonacci array, yielding more pro-
nounced minima up to higher fields.

As pointed out before, the background dissipation is
strongly asymmetric for the Fibonacci array [see
Fig. 2(a), field swept from positive to negative]. Since
magnetic dots sizes are the same for both arrays (only
the array geometry different), this effect is not connected
to the magnetic state of the dots [19]. The asymmetry may
be due to the more irregular distribution of pinning centers
in the Fibonacci array. This implies that the time needed to
establish a stable VL configuration is larger when new
vortices enter the sample than when they exit (leaving
pinned vortices behind), thus yielding stronger pinning
when a field is reduced than when it is increased. Further
experiments, including magnetization and magnetic re-

laxation, would be needed for better understanding of
this behavior.

In summary, we found matching effects between the VL
and different types of QP pinning potentials. The magne-
toresistance shows quasiperiodic series of minima at well-
defined applied fields. For the Fibonacci array, minima are
shallower and appear at fields for which the VL matches
the array of dots only on a local scale. This implies a short
VL correlation length. On the contrary, for the pentagonal
fractal array the minima are deeper and the series implies
the occurrence of matching over longer length scales. This
shows that the fractal structure of the pentagonal array
preserves the long-range correlations of the VL.
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[3] G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).
[4] E. Y. Andrei et al., Phys. Rev. Lett. 60, 2765 (1988).
[5] O. Daldini et al., Phys. Rev. Lett. 32, 218 (1974); A. T.

Fiory, A. F. Hebard, and S. Somekh, Appl. Phys. Lett. 32,
73 (1978); A. Pruymboom et al., Phys. Rev. Lett. 60, 1430
(1988); Y. Otani et al., J. Magn. Magn. Mater. 126, 622
(1993); M. Baert et al., Phys. Rev. Lett. 74, 3269 (1995);
J. I. Martı́n et al., Phys. Rev. Lett. 79, 1929 (1997); J. E.
Villegas et al., Science 302, 1188 (2003).

[6] M. Montero, O. Stoll, and I. Schuller, Eur. Phys. J. B 40,
459 (2004).

[7] J. I. Martı́n et al., Phys. Rev. Lett. 83, 1022 (1999).
[8] D. Shechtman et al., Phys. Rev. Lett. 53, 1951 (1984);

D. Levine and P. J. Steinhardt, Phys. Rev. Lett. 53, 2477
(1984).

[9] S. J. Poon, Adv. Phys. 41, 303 (1992).
[10] L. Guidoni et al., Phys. Rev. Lett. 79, 3363 (1997).
[11] G. S. Grest, P. M. Chaikin, and D. Levine, Phys. Rev. Lett.

60, 1162 (1988).
[12] A. Behrooz et al., Phys. Rev. Lett. 57, 368 (1986).
[13] J. M. Gordon et al., Phys. Rev. Lett. 56, 2280 (1986).
[14] V. Misko, S. Savel’ev, and F. Nori, Phys. Rev. Lett. 95,

177007 (2005).
[15] J. I. Martı́n et al., J. Magn. Magn. Mater. 256, 449

(2003).
[16] J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197

(1965).
[17] J. E. Villegas et al., Phys. Rev. B 72, 174512 (2005).
[18] A. Hoffmann, P. Prieto, and Ivan K. Schuller, Phys. Rev. B

61, 6958 (2000).
[19] D. J. Morgan and J. B. Ketterson, Phys. Rev. Lett. 80, 3614

(1998); M. J. Van Bael et al., Phys. Rev. B 68, 014509
(2003).

PRL 97, 027002 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
14 JULY 2006

027002-4


