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The behavior of the surface barrier that forms at the metal-vacuum interface is important for several
fields of surface science. Within the density functional theory framework, this surface barrier has two
nontrivial components: exchange and correlation. Exact results are provided for the exchange component,
for a jellium metal-vacuum interface, in a slab geometry. The Kohn-Sham exact-exchange potential Vx�z�
has been generated by using the optimized effective potential method, through an accurate numerical
solution, imposing the correct boundary condition. It has been proved analytically, and confirmed
numerically, that Vx�z! 1� ! �e2=z; this conclusion is not affected by the inclusion of correlation
effects. Also, the exact-exchange potential develops a shoulderlike structure close to the interface, on the
vacuum side. The issue of the classical image potential is discussed.
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Density functional theory (DFT) is a successful theory to
calculate the electronic structure of atoms, molecules,
clusters, and solids. Its goal is the quantitative understand-
ing of materials properties starting from the fundamental
laws of quantum mechanics. It is then a major drawback of
DFT [1], that when applied in its highly successful local
density approximation (LDA) to the metal-vacuum inter-
face system, it yields an exponential vanishing exchange-
correlation (xc) potential which fails to reproduce the
imagelike asymptotic behavior of the surface barrier [2].
This problem of LDA is common to all local or semilocal
extensions of it (GGA, meta-GGA,. . .). More importantly,
the issue of the long-range behavior of the surface barrier is
not even settled from the conceptual point of view, being
still unclear the relative importance of exchange and cor-
relation in determining this imagelike decay [3]. The aim
of this work is to provide a rigorous state-of-the-art calcu-
lation of the exchange component of the Kohn-Sham sur-
face barrier for the simplest model of a jellium metal-
vacuum interface. We have found that Vx�z� behaves as
�e2=z for large z in the vacuum region, and that it presents
a shoulder close to the interface, although mainly located
in the vacuum side. These findings are of great importance
for the interpretation of a variety of surface sensitive ex-
periments [3].

Our calculations are restricted to the slab-jellium model
of a metallic surface, where the discrete character of the
positive ions inside the metal is replaced by a uniform
distribution of positive charge (the jellium). The positive
jellium density is given by n��z� � �n��d=2� jz� d=2j�,
which describes a slab of width d, with jellium edges at
z � �d, 0. The model is invariant under translations in the
x, y plane (area A), so the wave functions of the auxiliary
Kohn-Sham system can be factorized as ’ik�r� �
eik���i�z�=

����
A
p

, where � and k are the in-plane coordinate
and wave vector, respectively. �i�z� are the normalized
spin-degenerate eigenfunctions for electrons in slab dis-
crete levels i ( � 1, 2, . . .), and energy "i. Within the Kohn-
Sham (KS) implementation of DFT, they are the solutions

of

 ĥ iKS�z��i�z� �
�
�@2

2m0

@2

@z2 � VKS�z� � "i

�
�i�z� � 0: (1)

The KS potential is the sum of several contributions:
VKS�z� � VH�z� � Vxc�z�. VH�z� is the classical (electro-
static) Hartree potential. Vxc�z� is the nonclassical xc con-
tribution; it is given by Vxc�z���Exc=�n�z�. Exc�
Exc�f"igf�ig	 is the xc contribution to the total energy
functional, and n�z��

Pocc:
i �k

i
F�

2j�i�z�j2=2� is the 3D den-
sity, with kiF �

����������������������������
2m0�"F � "i�

p
=@. "F is the metal Fermi

energy, given by the neutrality condition "F � @
2k2
F=

2m0 � VKS��d=2�, with kF � �3�2 �n�1=3. The optimized
effective potential (OEP) method of DFT has been spe-
cially designed for dealing with wave function and eigen-
value dependent Exc, as is our case [4]. After some lengthy
but standard manipulations of the OEP scheme, the calcu-
lation of Vxc�z� � Vxc;1�z� � Vxc;2�z� for real �i�z�’s and
Exc functionals which only depends on occupied subbands
can be summarized in the following set of equations [5]:

 Vxc;1�z� �
Xocc:

i

�kiF�i�z�	
2

2�n�z�
�uixc�z� � �Vixc	; (2)

 Vxc;2�z� �
Xocc:

i

�"F � "i�
�kiF�

2 i�z��i�z� �  0i�z��
0
i�z�

�n�z�
; (3)

where the ‘‘shifts’’  i�z� are given by

  i�z� �
X
j�i

�j�z�
Z 1
�1

�j�z0�
�Vixc�z

0�

�"j � "i�
�i�z0�dz0; (4)

with primes denoting derivatives with respect to z. Here,
�Vixc�z� � Vxc�z� � u

i
xc�z�, uixc�z�� �4�=A�k

i
F�

2�i�z�	 

�Exc=��i�z�, and mean values (for later use) are defined
as �Oi �

R
�i�z�O�z��i�z�dz. Equations (1)–(3) have to be

solved self-consistently. Several comments are worth here:
(a) Eqs. (2)–(4) are a set of integral equations for the local
(multiplicative) xc potential; (b) the shifts are invariant

PRL 97, 026802 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
14 JULY 2006

0031-9007=06=97(2)=026802(4) 026802-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.97.026802


under the replacement Vxc�z� ! Vxc�z� � �, with � a con-
stant. This means that the above set of equations deter-
mines Vxc�z� up to an additive constant that should be fixed
by imposing some suitable boundary condition. This is a
general property of all DFT calculations for fixed number
of particles, as is the present case; (c) if the shifts are forced
to be identically zero, the only term that survives is
Vxc;1�z�. This is exactly the KLI approximation [4], which
brings the identification Vxc;1�z� � VKLI

xc �z�. All results
given until this point include both exchange and correla-
tion. Unless stated otherwise, we will concentrate now in
the x-only case, where Exc ! Ex [6].

The long-range behavior of Vx�z� in the vacuum region
is an important point, that could be obtained for our slab
geometry directly from Eqs. (2) and (3). For this, first note
that by assuming that VKS�z! 1� ! 0 [which is equiva-
lent to the assumption that Vx�z! 1� ! 0], from Eq. (1)

we obtain that �i�z!1� ! e�z
������������
�2m0"i
p

=@ for all occupied
i (disregarding a factor involving powers of z). Following
the analysis of Refs. [7,8], one can derive also that

 i<m�z! 1� ! e�z
��������������
�2m0"m
p

=@, and that  m�z! 1� !

e�z
�����������������
�2m0"m�1

p
=@. Here, i � m is the last occupied slab dis-

crete level. Armed with these results, the asymptotic limit
of Vx�z� is immediate: Vx;2�z� tends exponentially to zero,
while Vx;1�z! 1� ! umx �z� � � �Vmx . Besides, as umx �z!
1� ! 0 (see below), we conclude that Vx�z! 1� !
Vx;1�z! 1� ! � �Vmx . Consistency with the starting as-
sumption Vx�z! 1� ! 0, yields the important constraint
� �Vmx � �Vmx � �umx � 0. This constraint fixes the undeter-
mined constant in Vx�z� discussed above. All numerical
results of this work have been obtained by using this
constraint as boundary condition. We have achieved the
self-consistent numerical solution of Eqs. (1)–(3) by two
different methods: (i) direct calculation of the shifts [9],
through the solution of the inhomogeneous differential
equation which results from application of the operator
�hiKS�z� to the shifts of Eq. (4); and (ii) direct solution of
the OEP integral equation for Vx�z�, that is exactly equiva-
lent and can be obtained from Eqs. (2) and (3) [10]. Both
methods agree in their results within numerical accuracy,
although the first approach using the shifts is faster in
computer time than the second. Both methods face numeri-
cal instabilities beyond a critical coordinate z in the vac-
uum region.

We start by presenting in Fig. 1 numerical results for
Vx�z�, running from relatively high (Al) to low (Rb) typical
metallic densities [11]. The exact-exchange potential
shows large-amplitude oscillations in the metallic side
close to the jellium edge [2], strongly depends on density
in the bulklike region at the slab center, and develops a
‘‘shoulder’’ close to the jellium edge, on the vacuum
side. For a homogeneous 3D electron gas Vx�z� becomes
a constant, given by Vx�3D� � ��18=�2�1=3=rs ’
�0:122=rs. Replacing in this expression for Vx�3D� the
rs values of Fig. 1, we obtain �0:590 (Al), �0:531 (Pb),

�0:459 (Mg),�0:372 (Li),�0:306 (Na),�0:246 (K), and
�0:234 (Rb). The results of Fig. 1 for Vx��d=2� are close
to these numbers, although they are systematically more
negative, due to a slab finite-size effect.

Two striking features of Vx�z� remain to be discussed:
(i) the building of a shoulder structure close to the metal-
vacuum interface, and (ii) the long-range behavior far from
the jellium edge. The strength of the shoulder structure
depends on density (Fig. 1) and slab size (see top panel of
Fig. 3). We show in Fig. 2 the details of the shoulder
structure: it is due to the shift-dependent term in Vx�z�,
that is, Vx;2�z�. This contribution is very small in the bulk-
like region at the slab center, but exhibits oscillations when
approaching the jellium edge, yielding the shoulder in the
total exact-exchange potential right after the interface. It is
important to note that this effect is beyond the KLI ap-
proximation, which amounts to approximate Vx�z� by
Vx;1�z�.

The detailed asymptotic behavior of the exact-exchange
potential is best discussed starting from the previous result
that Vx�z! 1� ! umx �z! 1�. Using the exact-exchange
energy-functional appropriate for a slab geometry [6], we
obtain

 umx �z! 1� ! �e
2kmF

Z 1
�1

�2
m�y�F�k

m
F jz� yj�dy; (5)

with F�x� � �x� L1�2x� � I1�2x�	=x
2, and I1 and L1

being the modified Bessel and Struve functions, respec-
tively. Considering now that in the asymptotic limit z� y,
an expansion of the functions I1 and L1 in the limit of large
arguments leads to F�z� y� ! �kmFz�

�1�1� y=z�
2=��kmFz� �O�1=z2�	. Inserting this in Eqs. (5), the re-
maining integral can be evaluated analytically, yielding the
important result
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FIG. 1. Dependence of Vx�z� on jellium density, for a fixed
slab width d � 30�F. Jellium edge at z � 0, slab center at z �
�d=2 � �15�F. z � 0 corresponds to the vacuum region. Note
that as �F � �32�2=9�1=3rsa0, the thickness of each slab (in
units of a0) increases from bottom to top.
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 Vx�z! 1� ! umx �z! 1� ! �
e2

z

�
1�

�
z
� . . .

�
; (6)

with � � �zm � 2=��kmF �. It is interesting to note that no
explicit knowledge of �m�z� is needed in passing from
Eq. (5) to (6), as just normalization has been used. Let us
emphasize, however, that Eq. (6) is an intrinsic slab result,
as in its derivation the discrete character of the energy
spectrum along the z coordinate played a crucial role.
This can be made more explicit by considering that �zm 
d and kmF  1=d, which allows approximate the �=z term
in Eq. (6) as proportional to d=z. For the expansion to be
valid, this term should be smaller than the leading one,
implying the slab limit d=z < 1.

The top panel of Fig. 3 displays the behavior of Vx�z� in
the neighborhood of the metal-vacuum interface, for rs �
2:07, and two different slab sizes. For the narrower slab, the
asymptotic regime is reached about 7�F’s from the jellium
edge, resulting in an excellent agreement between Vx�z�
calculated numerically, and the asymptotic approximation
of Eq. (5). The oscillation which appears in Vx�z�, is due to
a crossover regime, where the density passes from being
essentially dominated by �2

m�1�z� to �2
m�z�. For the slab

with d � 30�F, the asymptotic limit moves away from the
jellium edge, and a good matching is reached only between
the KLI component Vx;1�z� and umx �z! 1�. However, and
due essentially to the fact that Vx;2�z� has still a sizeable
value for the largest z coordinate within the reach of the
numerical calculation, not quantitative agreement is ob-
served yet between Vx�z� and Eq. (5). Having presented
then compelling numerical evidence of the validity of
Eq. (5) in representing the exact-exchange potential in
the asymptotic regime, the result of Eq. (6), which follows
at once from Eq. (5), is also confirmed numerically.

The long-standing puzzle of the image potential is
briefly discussed now at the light of the results presented
in the lower panel of Fig. 3. Already in 1936, in his
pioneering study of the surface barrier at the jellium
metal-vacuum interface, Bardeen considered that under
the combined effects of exchange and correlation, electrons
far enough from the jellium edge should be subject to the
classical image potential Vim�z� � �e

2=4z [12]. In fact, he
imposed this asymptotic behavior on his approximate
Hartree-Fock calculation. Many years later, the first appli-
cation of DFT at the study of the same problem was
performed by Lang and Kohn [2]. They used LDA, so their
Vxc�z� vanishes exponentially as z! 1, as already dis-
cussed. However, they recognized that the correct Vxc�z�
would behave like the classical image potential,

 Vxc�z! 1� ! Vim�z� � �e
2=4z: (7)

Motivated by this, we have included Vim�z� in the lower
panel of Fig. 3, and compared with our exact-exchange
results. As expected, Vim�z� decays more rapidly that our
Vx�z�, and misses the shoulder which is present in the
exact-exchange solution. Assuming that Eq. (7) is correct,
we speculate that the apparent discrepancy with Eq. (6) is
due to correlation, which is the only missing ingredient in
our exact x-only calculation. This would imply that Vc�z!
1� ! 3e2=4z. We emphasize, however, that this conclu-
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FIG. 2. Vx�z� in terms of the two components Vx;1�z� and
Vx;2�z� for rs � 2:07 and d � 30�F. V�x �z� (full dots) corre-
sponds to the exact-exchange potential including correlation (a
la LDA).
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FIG. 3. Upper panel: details of Vx�z�, Vx;1�z�, Vx;2�z�, and
umx �z! 1� in the vacuum region, for two slab sizes. Lower
panel: comparison of VKS�z� with Vim�z�, for d � 30�F. rs �
2:07 in both panels.
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sion is a direct consequence of the assumption that Vxc�z!
1� ! Vim�z�. To the best of our knowledge, no rigorous
proof inside the DFT framework exists for this equivalence
[3]. As a by-product, our contribution clearly points that
more work is needed on this subtle issue.

Let us place our results in the context of other related
works. In Ref. [13] the asymptotic behavior of Vxc�z� for
the case of a semi-infinite jellium surface was addressed
from a many-body point of view. It was stated (without
proof), that for macroscopic systems the exchange poten-
tial tends exponentially to zero, concluding that the long-
range components of Vxc�z� can only originate from corre-
lation effects. Similar conclusions were reached in
Ref. [14] by analyzing the asymptotic limit of the Sham-
Schlüter integral equation for Vxc�z�, except for the result
that Vx�z! 1� ! �1=z2, in disagreement with Ref. [13].
Being our numerical calculations restricted to finite-slab
geometries, we cannot compare with these two. We would
like to address, however, that our result that Vx�z! 1� !
�e2=z for very thick slabs (in terms of �F) is not in
agreement with either two results. The slab calculations
of Ref. [10,15], are much closer to ours. In Fig. 10 of
Ref. [10] results are shown for Vx�z�, obtained through
the numerical solution of the OEP integral equation, for a
slab of 4�F width (rs � 2:07). The figure suggests that
Vx�z� � 0 was forced about 1�F from the jellium edge,
spoiling any detailed study of the asymptotic properties of
Vx�z�. Using the same approach, Fig. 2 of Ref. [15]
presents results for Vx�z� for slab thickness of about 5�F,
for rs � 3:23. From the asymptotic analysis of the numeri-
cal results in their vacuum region, that only extends 1:25�F
from the jellium edge, the authors of Ref. [15] conclude
that Vx�z! 1� ! �1=z2. The results presented above
suggest, however, that the correct asymptotic behavior
sets in at much larger distances from the jellium edge.
Also, the shoulder is not discernible in their results for
Vx�z�. Our work is also not in agreement with the results of
Ref. [16], where through approximate analytical tech-
niques applied to a model slab geometry, it is claimed
that Vx�z! 1� ! �1=z2 asymptotically.

What about correlation? Both limits Vx��d=2� !
Vx�3D� and Vx�z! 1� ! �e2=z are unchanged if corre-
lation is included. The rigidity of the bulklike limit is
displayed in Fig. 2, where it is seen that Vx�z� does not
change in the metallic region if correlation is present. This
is essentially a consequence of the boundary condition
�Vmx � �umx , that ensures the exact fulfillment of the ex-

change bulklike limit, independently of correlation effects.
The asymptotic results of Eqs. (5) and (6) are also rigor-
ously valid even if correlation is included, as in this case
each one of the basic Eqs. (2)–(4) can be split into ex-
change and correlation components, due to the fact that
Exc � Ex � Ec. All the subsequent derivations leading to
Eq. (6) for the exchange component of the total KS poten-
tial remains valid in consequence in the presence of corre-
lation that will not modify the general properties of the
�i�z�

0s and the exchange component of the  i�z�0s on which

they are based, such as asymptotic behavior and
normalization.

In summary, we have achieved a rigorous analytical and
numerical study of the exchange component of the surface
barrier at the jellium metal-vacuum interface. The Kohn-
Sham exact-exchange potential develops a shoulderlike
structure within 1� 2�F’s from the jellium edge, and
decays as �e2=z at much larger distances. This exchange
asymptotic behavior is unperturbed by correlation. With
these exact results at the exchange level, the challenge
quest of DFT for a compatible energy correlation func-
tional is now much better focalized.
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