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We develop a theory of the Berry-phase effect in anomalous transport in ferromagnets driven by sta-
tistical forces such as the gradient of temperature or chemical potential. Here a charge Hall current arises
from the Berry-phase correction to the orbital magnetization rather than from the anomalous velocity,
which does not exist in the absence of a mechanical force. A finite-temperature formula for the orbital
magnetization is derived, which enables us to provide an explicit expression for the off-diagonal thermo-
electric conductivity, to establish the Mott relation between the anomalous Nernst and Hall effects, and to
reaffirm the Onsager relations between reciprocal thermoelectric conductivities. A first-principles evalu-
ation of our expression is carried out for the material CuCr,Se,_,Br,, obtaining quantitative agreement

with a recent experiment.
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The phenomena of transport fall into two categories:
those due to a mechanical force, such as the electric field
on charges, and those driven by a statistical force, such as
the gradient of temperature or chemical potential. The
mechanical force exists on the microscopic level and can
be described by a perturbation to the Hamiltonian for the
carriers, while the statistical force manifests on the macro-
scopic level and makes sense only through the statistical
distribution of the carriers. It has been established [1,2] that
the Berry phase of Bloch states has a profound effect on
transport driven by a mechanical force. This is through the
mechanism that the group velocity of a Bloch electron
acquires an anomalous term proportional to the mechanical
force, i.e.,
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where g,(k) is the band energy, —¢E is the mechanical
force due to the external electric field, and €, (k) is the
Berry curvature, the Berry phase per unit area in the k
space. Evaluation of the Hall current from the anomalous
term reproduces the Karplus-Luttinger formula [3] for the
anomalous Hall conductivity. Calculations based on the
Berry-phase effect have found much success in explaining
anomalous Hall effects (AHE) in ferromagnets of semi-
conductors [4], oxides [5], and transition metals [6].
Recent experiments [7,8] give further convincing evidence
in support of this theory.

A natural question is whether and how the Berry phase
also manifests in transport driven by a statistical force. On
the one hand, the anomalous velocity vanishes in the
absence of a mechanical force, eliminating the obvious
cause for a Berry-phase effect in this case. On the other
hand, this conclusion would introduce a number of basic
contradictions to the standard transport theory. First, a
chemical potential gradient would be distinct from the
electrical force, violating the basis for the Einstein relation
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for transport. Second, a temperature gradient would not
induce an intrinsic charge Hall current, violating the Mott
relation [see Eq. (10) below] between the AHE and the
anomalous Nernst effect (ANE), where a transverse current
is produced by a temperature gradient in ferromagnets.
Third, as will be made clear below, it would be impossible
to establish the Onsager relation between cross transport
coefficients connecting thermoelectric Hall currents and
forces. In addition, a recent experiment on the ANE in the
spinel ferromagnet CuCr,Se,_ Br, [9] found weak depen-
dence on scattering, suggesting that there should indeed be
a Berry-phase-induced intrinsic mechanism.

In this Letter, we solve the puzzle by showing how the
Berry-phase effect manifests in thermoelectric transport
driven by a statistical force. It turns out that the local
current of carriers acquires an extra term from the carrier
magnetic moment in the presence of a nonuniform distri-
bution which arises from the gradient of temperature or
chemical potential. However, the complete theory also
relies on a proper deduction of magnetization current
[10] and requires a deeper understanding of the orbital
magnetization. It was found that there is a Berry-phase
correction to the magnetization [11,12], and here we gen-
eralize it to the case of finite temperatures which is needed
for thermoelectric transport. This Berry-phase correction
eventually enters into the transport current produced by the
statistical force, playing the counterpart as the anomalous
velocity term due to a mechanical force.

We have thus found perfect harmony between statistical
and mechanical forces even in the presence of a Berry-
phase effect. The basic transport relations of Einstein,
Mott, and Onsager continue to hold, which gives strong
support for the validity of our theory. Finally, we also pro-
vide a reality check on the Berry-phase effect in the ANE
by calculating the intrinsic anomalous Nernst conductivity
a,, [13] for CuCr,Ses Br, using a first-principles
method. The obtained doping dependence curve agrees
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well with available experimental data [9]. Our calculation
also predicts a peak-valley structure between the data
points, at a place where the anomalous Hall conductivity
has a sudden sign and magnitude change.

Local and transport currents.—In the conventional
Boltzmann transport theory, one considers a statistical
distribution g(r, k) of carriers in the phase space of position
and crystal momentum. The distribution function satisfies
the Boltzmann equation with a collision integral whose
form depends on the details of the collision process. The
current density is given by J = —e [[dk]g(r, k)F, where
[[dk] is shorthand for [ dk/(27)*, and a summation over
the band index has been omitted for simple notation. In the
absence of a mechanical force, the electron velocity is
simply 7 = de(k)/hak. It is then apparent that the anoma-
lous velocity term due to the Berry phase drops out of the
expression for the current.

However, the above picture is naive in that the carrier is
treated as a structureless point particle. The quantum rep-
resentation of the carrier is, in fact, a wave packet, which
has a finite spread in the phase space. The wave packet
generally rotates about its center position, as illustrated in
Fig. 1, giving rise to an orbital magnetic moment m(k) =
—(e/2)W|(# — r,) X ©|W), where |W) is the wave packet
and ¥ is the velocity operator [1,2]. A careful coarse
graining analysis [14] shows that the correct expression
for the local current has an extra term:

J=—e f [dk]g(r, k)i + V X / [dk]f(r, )m(K), ()

where the magnetic moment enters explicitly. In the extra
term, we have replaced g(r, k) with the local equilibrium
Fermi-Dirac distribution f(r, k) for a linear-order calcula-
tion. When the temperature or chemical potential varies in
space, the extra term will be proportional to the gradient of
these thermodynamic quantities and is therefore non-
negligible.

For transport studies, it is important to discount the
contribution from the magnetization current, a point which
has attracted much discussion in the past. It was argued that
the magnetization current cannot be measured by conven-
tional transport experiments. (For a recent most compre-
hensive work, see Ref. [10].) Therefore, one introduces the
concept of transport current, defined by
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FIG. 1. The wave packet description of a charge carrier whose
center is (r,, k). A wave packet generally possesses two kinds of
motion: the center of mass motion and the self-rotation around
its center. Both of them contribute to the local current density as
given in Eq. (2).

where M(r) is the magnetization density. This is entirely
analogous to the classic distinction between microscopic
current and free current [15].

It is also important to realize that the magnetization
density is not simply a statistical sum of the carrier mag-
netic moments. It has been shown recently that there is a
Berry-phase correction to the magnetization [11,12]. The
contribution from the carrier magnetic moments to the
local current will be subtracted out in the transport current,
but the Berry-phase correction to the magnetization will
give rise to an extra term in the transport current. Earlier
work concentrated on the zero temperature magnetization,
and we provide an extension to the finite-temperature case
below. Using Eq. (6) for the magnetization, we find that the
transport current is given by

i=—e f[dk]g(r, k)i — V X % /[dk]%ﬂ(k)
X log(1 + e Ple=r), 4)

where 8 = 1/kpT, and the Berry curvature is defined by
Q(k) = Vi X (uliVi|u), with |u) being the periodic am-
plitude of the Bloch wave.

The above expression gives a complete account of the
transport current in ferromagnets and for crystals with
nonzero Berry curvatures, in general. The first term is the
usual expression for the charge current, which vanishes at
local equilibrium (assuming the absence of a mechanical
force), i.e., g(r, k) = f(r, k). Nonequilibrium correction to
first order in the gradient of temperature or chemical
potential yields a result strongly depending on the relaxa-
tion process, and a transverse current can result from skew
scattering due to spin-orbit coupling [16]. The second term
is new, which results from the Berry-phase correction to
the magnetization. It is also first-order in the statistical
force but is independent of the relaxation time and is,
therefore, an intrinsic property of the system.

Orbital magnetization at finite temperatures.—The or-
bital magnetization of Bloch electrons has been an out-
standing problem in solid state physics. Recently, different
approaches [11,12] have been used to derive a formula at
zero temperature, where the Berry phase is found to play an
important role. In order to study thermoelectric transport,
we need to generalize it to finite temperatures. Our deriva-
tion is made easy by using the field-dependent density of
states introduced in Ref. [11], where it was shown that, in
the weak-field limit, a quantum-state summation >, O(k)
of some physical quantity O(k) should be converted to a
k-space integral according to [[dk](1 + e€2 - B/h)O(k).

The equilibrium magnetization density can be obtained
from the grand canonical potential, which, within first
order in the magnetic field, may be written as

1
F=——Ylog(l + e Alewn)
22

1 e
= — _ _B- —Bley—p)
/[dk](l +-B Q)log(l +e ), (5)
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where the electron energy &, = (k) — m(k) - B includes
a correction due to the orbital magnetic moment m (k). The
magnetization is then the field derivative at fixed tempera-
ture and chemical potential, M = —(dF/dB),, r, with the
result

M(r) = [ [dk1f(r, K)m(K)

+[]‘3 f [dk]%ﬂ(k) log(1 + e Ale=m). (6)

For generality, we have included a position dependence to
cover the situation of local equilibrium with a position-
dependent temperature and chemical potential.

We have thus derived a general expression for the equi-
librium orbital magnetization density, valid at zero mag-
netic field but at arbitrary temperatures. The first term is
just a statistical sum of the orbital magnetic moments of the
carriers originating from self-rotation of the carrier wave
packets. It has been derived in Refs. [1,2] with the expres-
sion m(k) = —i(e/2h){Viu| X [H (k) — e(k)]|V,u), where
H(k) is the crystal Hamiltonian acting on |u). It has the
same symmetry properties as the Berry curvature. The
second term of Eq. (6) is the Berry-phase correction to
the orbital magnetization. It is of topological nature, aris-
ing from a bulk consideration, on the one hand, as in the
above derivation, and being connected to a boundary cur-
rent circulation on the other [17]. Interestingly, it is this
second term that eventually enters the transport current.

Anomalous thermoelectric transport.—With the aid
of Eq. (4), it is straightforward to calculate various
thermoelectric responses to statistical forces. For ex-
ample, a chemical potential gradient will produce,
through the second term, a Hall current given by —Vu
X(e/n) [[dk]f(k)Q(k). This is the same as the Berry-
phase-induced anomalous Hall current in response to an
electric field if one substitutes Vu/e for the field. It is
gratifying to see that the Einstein relation continues to hold
in the presence of the Berry-phase effect.

In the presence of a temperature gradient, an intrinsic
Hall current also results from the second term of Eq. (4),

\%A
o= =% [0 e ~ s
+ kT log(1 + eﬁ<8m)} (7)

One can then extract an anomalous Nernst conductivity
a,, defined by j, = a,,(—V,T). On a different route, we
can also obtain the same result by invoking a fictitious
gravitational field [18], establishing the Einstein relation
between this mechanical force and the temperature
gradient.

Interestingly, by integration by parts, a,, can be written
into the following more suggestive form:

1 J -
Ay =773 ]ds—fgx)r(s)s Mr ®)
e Ju T

where o, (¢) is the intrinsic anomalous Hall conductivity
at zero temperature with Fermi energy &, given by

2
7o) = =5 [lak106 -~ 00 ©)

At low temperatures, the above relation reduces to

_ 7 k%T

.. = kBl
w 3 ¢

.y (ep). (10)
Such relations between the electrical and thermoelectric
conductivities are known as Mott relations. They were
proved for nonmagnetic materials without or with a mag-
netic field [19,20]. Our result extends the validity of this
relation to ferromagnets and other systems with a Berry
curvature and justifies the usage of Eq. (10) in Ref. [9].

The reciprocal of the ANE is the generation of a trans-
verse heat current by an electric field. The Onsager relation
dictates that the Berry phase should also affect the latter. To
show this explicitly, we consider the energy current carried
by a wave packet (W|(HF+rH)/2|W)=ei — E X
m(k), where the second term is from the field correction
to the local Hamiltonian. Assuming a uniform temperature
and chemical potential [21], we obtain the local energy
current to first order in the electric field:

JE = f [dk]g(K)eF — E X f [ak]fK)m(k), (1)

where the electron velocity 7 is given by Eq. (1). However,
the energy current also has a magnetization part from an
“energy” magnetization [10]. In the present case, it is
given by —E X M, which is nothing but the material-
dependent part of the Poynting vector E X H describing
the energy flow (with H = B/u, — M) [15]. Since this
energy flow exists in an equilibrium state, it does not
correspond to a transport current and thus must be sub-
tracted from J* to yield the transport energy current j£ =
JE + E X M. Based on our expression (6) for the magne-
tization density, we finally find the Berry-phase correction
to the heat current (defined by j¢ = j£ — uj):

i =Ex [laele - wr
+ kT log(l + e Ple=m))] (12)

while the usual expression for the heat current is
[ldk]g(k)(e — w)v, where v is the usual group velocity
determined by the band energy. In this case, the Berry-
phase correction comes from both the anomalous velocity
and the orbital magnetization. Comparison with Eq. (7)
shows that the Onsager relation is indeed satisfied, provid-
ing strong evidence for the validity of our theory.
Comparison with experiment.—The intrinsic anomalous
Nernst conductivity «,, depends only on the band structure
and Berry curvature, so it can be evaluated for crystals
based on first-principles methods. Here we report our result
for CuCr,Se4_Br, and compare with the experiment [9].
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FIG. 2. The intrinsic anomalous Nernst conductivity a,, (di-
vide by the temperature T) of CuCr,Se,_ Br, as a function of
the Br content x. The calculated curve is compared with experi-
mental results (@) extracted from Ref. [9].

The band structure and Berry curvature are calculated
following the procedures in Ref. [6], using the generalized
gradient approximation for the exchange-correlation po-
tential. Such calculations are very extensive, and, to reduce
the work load, we assume that doping affects the Fermi
energy but not the band structure, which is justified for the
present compounds [22].

The calculated «a,, is plotted in Fig. 2 as a function of
doping x together with the experimental data from Ref. [9].
The comparison is quantitatively good, except for the data
point at x = 0.25. This is, however, a rather special point,
because it was reported [9] that, for unknown reasons, a,,
is not really proportional to 7 for x = 0.25. At low tem-
peratures, a proportional relation is expected from the Mott
relation, which is followed strictly by all the data points at
other doping densities.

We also note that, while our theory predicts a pro-
nounced peak-valley structure around x = 0.3, the avail-
able experimental data at present is too sparse to confirm or
disprove it. The oscillatory behavior results from the com-
plicated band structure of this material and occurs when the
Fermi energy (which depends on doping) goes through a
region of spin-orbit-induced energy gap. A detailed expla-
nation based on the numerical calculations will be pre-
sented elsewhere [22]. An indirect experimental evidence
for this peak is that it occurs at a place where the anoma-
lous Hall conductivity has a sudden change of sign and
magnitude around x = 0.3 according to Ref. [7]. Such a
correlation is expected from the Mott relation (10) and the
fact that the Fermi energy changes approximately linearly
with the doping density [22]. Nevertheless, more direct
experimental results are clearly needed for a careful com-
parison with our theory.
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