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Spin injection and detection in silicon is a difficult problem, in part because the weak spin-orbit
coupling and indirect gap preclude using standard optical techniques. Two ways to overcome this
difficulty are proposed, both based on spin-polarized transport across a heterojunction. Using a realistic
transport model incorporating the relevant spin dynamics of both electrons and holes, it is argued that
symmetry properties of the charge current can be exploited to detect electrical spin injection in silicon
using currently available techniques.
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In addition to its central role in conventional electronics,
silicon has spin-dependent properties (such as long spin-
relaxation and decoherence times) that could be particu-
larly useful in spin-based quantum-information processing
and spintronics [1]. Unfortunately, the underlying origins
of these attractive properties—the indirect band gap, weak
spin-orbit coupling, and small concentration of paramag-
netic impurities [2]—also preclude using the standard
optical methods of spin injection and detection in semi-
conductors. Robust spin injection and detection in silicon
has already been pursued for decades [1]. Some schemes
use (ferromagnetic) metal-Si hybrid structures for electri-
cal injection or detection [3] or suggest magnetic sensitiv-
ity of photoresponse during light illumination [4].
However, material difficulties, such as the formation of
silicides and interface quality, are compounded by the lack
of a theoretical description of nonequilibrium spin trans-
port that accounts for the complexity of such inhomoge-
neous hybrid structures. Consequently, it remains a
challenge to quantify the degree to which spurious effects
and magnetoresistance would compete with signals that
might be attributed to spin injection.

Circularly polarized light can be used to polarize carriers
in semiconductors with a direct band gap. Moreover, both
the direction and the magnitude of optically generated
charge currents [5] and pure spin currents [6] can be
controlled optically. In the reverse process, the presence
of polarized carriers in a direct-gap semiconductor can be
detected by measuring the circular polarization of the
recombination light [1,7]. Typical detection schemes use
spin light-emitting diodes (LEDs), where the selection
rules for radiative recombination processes can be used
to relate the circular polarization of the emitted light to the
spin polarization of the carriers [8].

For silicon, the indirect band gap makes direct applica-
tion of these techniques problematic. Here we propose two
approaches to overcome this difficulty. The first, shown in
Fig. 1(a), is based on high-quality heterojunctions between
Si and a direct-gap semiconductor. In such a heterojunc-
tion, optical techniques could be readily employed in the

direct-gap semiconductor to circumvent the problems with
spin injection and detection in Si. The key prerequisite for
such a proposal is an interface with Si that would not be
detrimental to the spin transport. This is a nontrivial under-
taking, as the lattice mismatch between Si and most direct-
gap semiconductors typically leads to low-quality interfa-
ces with a high density of interfacial defects. Nevertheless,
there has been recent progress in fabricating high-quality
GaAs/Si interfaces (despite the 4% lattice mismatch) [9];
GaP1�xNx leads to even smaller mismatch (below 1%)
[10]. Recent studies of charge transport in GaAs/Si hetero-
junctions as well as optical excitations in GaAs LEDs
grown on Si [11] suggest the feasibility of the scheme
shown in Fig. 1(a). In particular, GaAs/Si heterojunctions
displayed I-V characteristics of an ideal diode [12].

In the second approach, shown in Fig. 1(b), magnetic
semiconductors approximately lattice matched with Si
could be used for spin injection and detection [13]. For
example, the Mn-doped chalcopyrite ZnGeP2 (mismatch
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FIG. 1 (color online). Proposed schemes for spin injection and
detection in silicon. (a) Optical realization based on radiative
processes in direct-gap semiconductors surrounding silicon.
Arrows depict the spatial decay of nonequilibrium spin.
(b) Electrical realization based on the spin splitting and the net
spin density (magnetization) in the two magnetic regions. The
relative orientation of the nonequilibrium spin in Si and the
equilibrium spin in the magnetic regions influences the magni-
tude of a charge current or an open-circuit voltage. Other
realizations are also possible by combining schemes (a) and (b).
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<2%) [14] has been reported to be ferromagnetic at room
temperature. Another Mn-doped chalcopyrite, ZnSiP2, was
recently predicted [15] to be ferromagnetic, as well as
highly spin polarized and closely lattice-matched with Si
(mismatch <1%). Mn doping of the chalcopyrite alloy
ZnGe1�xSixP2 could lead to an exact match.

To capture the main features of spin-polarized transport
across a heterojunction we formulate here a model, repre-
senting both schemes in Fig. 1. One can model the right
(injecting) electrode by appropriate boundary conditions,
and we focus on the two left regions that in our model
define the heterojunction, doped with ionized acceptors
and donors of density Na and Nd. Codoping with magnetic
impurities would additionally introduce a net spin, but
need not change the number of carriers. An inhomogene-
ous distribution ofNa;d implies a large deviation from local
charge neutrality and Poisson’s equation must be explicitly
solved. For nondegenerate doping the spin-resolved qua-
siequilibrium electron and hole densities are

 n��
Nc
2
e��Ec���n��=kBT; p��

Nv
2
e���p��Ev��=kBT; (1)

where � � �1 for spin up (") and �1 for spin down (#).
The total electron density n � n" � n# can also be decom-
posed as a sum of equilibrium and nonequilibrium parts,
n � n0 � �n. We define the electron-spin density sn �
n" � n# and the spin polarization Pn � sn=n, with an
analogous notation for holes. In Eq. (1), subscripts c and
v label quantities pertaining to conduction and valence
bands. The corresponding effective density of states are
Nc;v � 2�2�mc;vkBT=h

2�3=2, where mc;v are effective
masses. The spin-� conduction band edge (see Fig. 2)
Ec� � Ec0 � q�� �q�c differs from its nonmagnetic
bulk value Ec0 because of the electrostatic potential �
and the spin splitting 2q�c, which parametrizes Zeeman
or exchange splitting due to magnetic impurities and/or an
applied magnetic field [1]. Here, �Ec is the conduction-
band-edge discontinuity and �n� � �0 � ��n� is the
chemical potential for spin-� electrons. An analogous
notation holds for the valence band and holes.

We assume that transport is dominated by drift diffusion,
so that the spin-resolved current densities are

 J n� � ��n�n�rEc� � qDn�Ncr�n�=Nc�; (2)

 J p� � ��p�p�rEv� � qDp�Nvr�p�=Nv�; (3)

where �� and D are mobility and diffusion coefficients.
‘‘Drift terms’’ have quasielectric fields / rEc;v� that are
generally spin dependent [r�c;v � 0 is referred to as a
magnetic drift [16] ] and different for conduction and
valence bands. In contrast to homojunctions, additional
‘‘diffusive terms’’ arise due to the spatial dependence of
mc;v and Nc;v.

We write the continuity equation for n� as
 

�@n�=@t�r�Jn�=q��r��n�p��n�0p�0�

��n��n����Pn0n�=2�sn�G�;

(4)

with an analogous equation for p�. Here, r� is the coeffi-
cient of the recombination rate of spin-� carriers, �sn;p is
the spin-relaxation time for electrons and holes, and G� is
the photoexcitation rate due to electron-hole pair genera-
tion and optical orientation (when G" � G#) [1,7]. Spin
relaxation equilibrates carrier spin while preserving non-
equilibrium carrier density [7], so that for nondegenerate
semiconductors we have Pn0 � tanh�q�c=kBT�.

We make several assumptions to solve this model ana-
lytically. We focus here on the steady-state low-injection
regime, at applied bias jVj<min�jEc� � Ev�j�. Spin-orbit
coupling in the valence band typically leads to a much
faster spin-relaxation of holes than electrons [3–4 orders
faster in GaAs [1] ], and so it is reasonable to consider that
the hole spins are in equilibrium (�sp � 0 and Pp � Pp0).
As a result, only the nonequilibrium electron-spin density
(�sn ! �s) and the minority carrier density need to be
calculated throughout the heterojunction. We assume a
sharp doping profile Nd�x� � Na�x�; referring to Fig. 2,
this leads to a discontinuous change in materials pa-
rameters at x � w=2. We take Nc;v, ��, D, and the permit-
tivity � to be constant outside the space-charge region xL <
x < xR, and hence label them by indices L and R. The
width of a space-charge region is xR � xL / �Vbi � V�1=2,
where the built-in voltage is qVbi � ��Ec �
kBT ln�n0RNcR=n0LNcL�. The discontinuity �Ec;v can be
accurately measured at interfaces with Si [17].
Equations (2) and (3), together with the continuity equa-
tions, reduce to diffusionlike equations for �n, �s in the p
region and �p, �s in the n region. For the (magnetic) p
region, we find that the spatial dependence of both �n and
�s are described by two distinct decay lengths; this is in
marked contrast to previously studied cases [1]. These
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FIG. 2. Band diagram for a magnetic heterojunction. In equi-
librium, the chemical potential �0 is constant. Conduction- and
valence-band edges (Ec;v) are spin split in the magnetic p region,
while there is no spin splitting in the nonmagnetic n region
(corresponding to Si). For a sharp doping profile, there are
generally band-edge discontinuities (�Ec;v� at x � w=2.
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decay lengths can be written as

 	�1;
�1�f�L�2
" �L

�2
# �L

�2
s �=2	��L�2

" �L
�2
#

�Pn0L�2
s �

2��1�P2
n0�L

�4
s �

1=2=2g�1=2; (5)

where the upper sign refers to 	�1, L� � �Dn=r�p�0�
1=2

are the electron diffusion lengths, and Ls � �Dn�sn�
1=2 is

the electron-spin diffusion length.
It is instructive to consider the regime of spin-

unpolarized holes, appropriate for the scheme shown in
Fig. 1(a). In this regime we have p"0 � p#0 � Na=2 and
r" � r# � 2r [in a nondegenerate regime r" 
 r# even for
Pp � 0 [18] ]. It follows from Eq. (5) that 	�1 reduces to
Lsn � �DnTs�1=2, where Lsn is the effective electron-spin
diffusion length and Ts � �rNa � 1=�sn�

�1 is the electron-
spin lifetime. Analogously, 
�1 reduces to the electron
diffusion length Ln � �Dn�n�

1=2, where �n � 1=rNa is
the electron lifetime [7]. Thus, in this regime 	�1 and

�1 separately determine the decay lengths for �s and
�n, respectively. For the more general case, in Fig. 3 we
show 	�1 and 
�1 as a function of Pp. From the behavior
of the decay lengths for �n and �s, we conclude that
polarization of the equilibrium hole spins leads to a strong
modification of charge and spin dynamics of electrons.

We turn now to the more general case of spin detection
using magnetic semiconductors, shown in Fig. 1(b), and
solve the corresponding problem of spin-polarized trans-
port across the heterojunction in Fig. 2. We impose the
Ohmic boundary conditions �n � �s � 0 at x � 0, and
include optical or electrical carrier and spin injection
through the boundary conditions �p � 0 and �s � 0 at
x � w. To match the chemical potentials �n;p� at xL
and xR requires satisfying the self-consistency condition
PLn � �PLn0 � �P

R
n �=�1� PLn0�P

R
n �, where �PRn � �sR=Nd

is determined from the continuity of the spin current,
DnLd��sL�=dx � DnRd��sR�=dx. Consistent with this
matching, a generalization of Shockley’s relation [19]

is �nL � n0L�exp�qV=kBT� � 1� � s0L exp�qV=kBT��P
R
n

and �sL� s0L�exp�qV=kBT��1��n0Lexp�qV=kBT��P
R
n ,

such that �nL, �sL and �nR, �sR can be considered as
boundary conditions in the p and n region, respectively.
For the p region we then obtain

 �n; �s � �C	n;s
�
2 � a��nL � b�sL
�	2 � 
2� sinh�	xL�

sinh�	x�

� C
n;s
�	2 � a��nL � b�sL
�	2 � 
2� sinh�
xL�

sinh�
x�; (6)

where C	n � C
n � 1 for �n, C	s � ��	2 � a�=b and
C
s � ��


2 � a�=b for �s, and we have defined a �
��L�2

" � L
�2
# �=2 and b � ��L�2

" � L
�2
# �=2.

In the n region (representing Si), the total charge current
J is the sum of the minority carrier currents at xL and xR,
J � JnL � JpR, in analogy to Shockley’s formulation
[20]. JnL � qDnLd��nL�=dx, and d��nL�=dx can be eval-
uated using Eq. (6). A straightforward method for detecting
injected spin in Si follows from the symmetry properties of
the different contributions to the charge current under
magnetization reversal. By reversing the equilibrium spin
polarization using a modest external magnetic field (Pn0,
Pp ! �Pn0, �Pp) it follows from Eq. (5) that 	, 
! 	,

 and a, b! a, �b. A part of JnL, odd under such
reversal, can be identified as the spin-voltaic current [16],

 Jsv / qDnLn0L exp�qV=kBT��PRn=�	2 � 
2�; (7)

which originates from the interplay of the equilib-
rium and nonequilibrium (injected) spin polarization in
the p and the n region, respectively. Measurements
of J�V; Pn0; Pp� � J�V;�Pn0;�Pp� � 2Jsv�V;Pn0; Pp�
would then provide: (1) cancellation of contributions to
the charge current that are not related to the injected spin in
Si and (2) a choice of V to facilitate a sufficiently large Jsv
for accurate detection. Alternatively, for the optical detec-
tion scheme of Fig. 1(a), one would consider the limit
Pn0 � Pp � 0 in Eq. (6), and evaluate Pn�x�.

We illustrate the effects of spin injection and detection in
Si using the heterojunction in Fig. 2. Figure 4 shows both
the analytical results discussed above and the correspond-
ing numerical results from the self-consistent solution of
Poisson’s equation and the four drift-diffusion equations
[Eqs. (2)–(4)]. Numerical results require only imposing
boundary conditions at x � 0, w and no assumptions about
matching conditions at xL;R. We use a standard set of
parameters for Si doped with Nd � 1017 cm�3 [21]:
NcR � 3:2� 1019 cm�3, DnR � 4DpR � 20 cm2=s, �R �
11:7, �p � 10�7 s, an intrinsic carrier density [19] niR �
1010 cm�3, and estimated spin-relaxation time in Si as
�sR � 10�7 s. Circularly polarized light in zinc blende
semiconductors, such as GaAs, generates spin polariza-
tion of up to �Pn � 0:5, which can be increased even
further using strain or quantum confinement [1,7]. We
model the effects of spin injection from a neighboring
direct-gap semiconductor, as depicted in Fig. 1, by assum-
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FIG. 3. Decay lengths 	�1 and 
�1 in the magnetic p region,
normalized to the electron diffusion length Ln � �Dn�n�

1=2, as a
function of hole-spin polarization for fixed electron spin polar-
ization Pn0 � 0:35. Each curve is labeled by the ratio of electron
lifetime to spin-relaxation time, �n=�sn.
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ing �Pn � 0:4 at x � w, and we set �Ec � 0:2. For a
ferromagnetic semiconductor in the p region we choose
Na�1015 cm�3, NcL�1019 cm�3, DnL�5 cm�3=s, �L �
10, �n � 10�9 s, niL � �0:6�

1=2106 cm�3, and �sL �
10�10 s. We parametrize the spin splitting of carrier bands
(see Fig. 2) with Pn0 � 0:35 and Pp � 0:8 which, for
Boltzmann statistics, corresponds to a splitting of q�v 

3q�c 
 kBT [22]. The main plot in Fig. 4 shows Pn�x�. In
the lightly doped p region there is a deviation from the
numerical result which can be attributed to drift effects [1]
even for x < xL and the accuracy of the assumption of
matching chemical potentials at xL;R. However, at various
biases, analytical results accurately give the maximum
value for Pn and, as can been seen for x > xR numerical
and analytical solutions coincide. The effect of decay
lengths in the p region (analytic results yield 	�1 

0:22 �m and 
�1 
 0:64 �m) can be seen in the
Fig. 4(a). Analogous to Pn�x�, the decay of n, s is influ-
enced by drift effects and numerical and analytical results
differ slightly. In the n region, LsR��DnR�sR�1=2
14�m
implies a weak spin decay (�Pwn 
 �PRn ), and the self-
consistency condition gives an estimate PLn 
 �0:35�
0:4�=�1� 0:35� 0:4� 
 0:66. We find a large ‘‘signal-to-
background ratio,’’ Jsv=Jn, over a range of bias voltages.
Analytical results, which do not require an additional
numerical differentiation or current subtraction, are shown
in Fig. 4(b). We thus predict that the magnitude of this
spin-voltaic current—a fingerprint for spin injection and
detection in Si—could readily be detected using existing
experimental techniques [23].

Our theoretical framework could be also used to calcu-
late the effects of nonequilibrium spin in other magnetic

heterojunctions, including Si-based spin transistors [24].
An extension to the regime of large forward bias could
provide an alternative method to detect nonequilibrium
spin in Si. Even without a source of spin injection, a
nonequilibrium spin could be generated through the pro-
cess of spin extraction [16,25] into a neighboring magnetic
region. Our findings should also provide useful test cases
for developing more general numerical methods for treat-
ing spin-polarized transport [26].
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FIG. 4. Electron-spin polarization, Pn, for a magnetic hetero-
junction at forward bias V � 0:8 V. The equilibrium spin polar-
izations in the p region are Pn0 � 0:35 and Pp � 0:8, while the
injected spin polarization in the n region is �Pn � 0:4 at w �
3 �m. For x > xR numerical and analytical results coincide.
Inset (a) profile of the electron carrier and spin density in the
p region, normalized to the corresponding electron density at
xL � 1:078 �m (V � 0:8 V). Inset (b) voltage dependence of
the electron charge current Jn and its part due to the nonequi-
librium spin (the spin-voltaic current Jsv).
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