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By combining accurate liquid-vapor coexistence and heat-capacity data, we have unambiguously
separated two nonanalytical contributions of liquid-gas asymmetry in fluid criticality and showed the
validity of ‘‘complete scaling’’ [Fisher et al., Phys. Rev. Lett. 85, 696 (2000); Phys. Rev. E 67, 061506
(2003)]. We have also developed a method to obtain two scaling-field coefficients, responsible for the two
sources of the asymmetry, from mean-field equations of state. Since the asymmetry effects are completely
determined by Ising critical exponents, there is no practical need for a special renormalization-group
theoretical treatment of asymmetric fluid criticality.
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A controversial issue of liquid-gas asymmetry in fluids
has been a subject of prolonged discussions for more than a
century since Cailletet and Mathias’s discovery of the
empirical ‘‘law’’ of rectilinear diameter [1]. According to
this law, the mean of the densities of liquid �0 and saturated
vapor �00 is a linear function of the temperature T:

 ��̂d �
�0 � �00

2�c
� 1�Dj�T̂j; (1)

where �c is the critical density; �T̂ � �T � Tc�=Tc is the
reduced distance to the critical temperature Tc. The
system-dependent coefficient D generally increases from
0.02 for 3He [2] to values larger than unity with increase of
Tc [3,4]. In this Letter, we demonstrate how the mean-field
rectilinear diameter splits up in the critical region into two
‘‘singular diameters’’ associated with two different sources
of asymmetry. It is commonly accepted that fluids asymp-
totically ��T̂ ! 0� belong to the critical-point universality
class of the Ising model [5]. We argue that the asymmetry
effects in near-critical fluids, at least in the lower approxi-
mation, are determined by Ising critical exponents; hence,
in contrast to a commonly used approach, there may be no
need for a special renormalization-group theoretical treat-
ment of asymmetric fluid criticality.

Thermodynamics near a critical point is controlled by
two scaling fields, ‘‘ordering’’ h1 and ‘‘thermal’’ h2, while
an appropriate field-dependent potential h3 is a universal
function of h1 and h2 [5]:

 h3 ’ h2��
2 f�

�
h1

h���2

�
; (2)

where � � 0:109, � � 0:326, and � � 1:239, interrelated
as �� 2�� � � 2, are universal Ising critical exponents
in the scaling power laws (as a function of h2 at h1 � 0) for
the weakly divergent susceptibility, order parameter, and
strongly divergent susceptibility, respectively [5]. The scal-
ing ‘‘densities,’’ a strongly fluctuating order parameter �1

and a weakly fluctuating �2, conjugate to h1 and h2, such

that dh3 � �1dh1 ��2dh2. The universal function f�

contains two system-dependent amplitudes, and the super-
script � refers to h2 _ 0. The Ising model formulated for
fluids is known as ‘‘lattice gas’’ [6]. In the lattice gas, h3

is the ‘‘critical part’’ of the grand thermodynamic
potential � � �PV, taken per unit volume; thus, h1 is
the dimensionless chemical-potential difference ��̂ �
����c�=kBTc, where �c is the value of the chemical
potential at the critical point and kB is Boltzmann’s con-
stant. By definition, h1 � 0 along the critical isochore
above Tc and along the liquid-vapor coexistence curve
below Tc. Hence, in the lattice gas the order parameter
�1 � ��̂ � ��� �c�=�c, the thermal scaling field h2 �

�T̂, and�2 � ���̂ Ŝ� � ��̂ Ŝ��̂cŜc�=kB, where �̂ Ŝ is the
density of entropy.

The lattice gas has a special symmetry: The order pa-
rameter is symmetric with respect to the critical isochore
(D � 0). Since the early 1970s, the liquid-gas asymmetry
has been commonly incorporated into the lattice-gas anal-
ogy by linear mixing of two independent physical fields
��̂ and �T̂ into both the theoretical scaling fields h1 and
h2 [7]. Since the absolute value of entropy is arbitrary,
mixing of �T̂ into h1 plays no role. Contrarily, mixing of
��̂ (with b2 as a mixing coefficient) into h2 has an
important consequence, known as the ‘‘singular diameter’’:
the mean of the densities must contain a nonanalytic con-
tribution / b2j�T̂j1��, so that d���̂d�=dT̂ / b2j�T̂j��,
diverging weakly. However, the chemical potential would
remain an analytical function of temperature along the
liquid-vapor coexistence and the symmetry would be re-
stored by a redefinition of the order parameter as �1 �

��̂� b2���̂ Ŝ�.
At this point, we encounter a major problem. First of all,

the existence of the j�T̂j1�� term in the ‘‘diameter’’ of real
fluids has never been detected unambiguously. While some
fluids show strong deviations from rectilinear diameter,
apparently even stronger than j�T̂j1�� [3], many fluids
show very little or no deviation at all [8,9]. Moreover, there
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is a conceptual problem with mapping real fluids into the
lattice gas even at the mean-field level. In the mean-field
approximation, the critical part of the thermodynamic
potential is represented by a Landau expansion:

 h3 �
1
2a0h2�2

1 �
1
4u0�4

1 � h1�1: (3)

When h1 � ��̂, h2 � �T̂ � b2��̂, and �1 �

��̂� b2���̂ Ŝ�, this expansion generates asymmetric
terms / b2�T̂���̂�3 and / b2���̂�

5. However, in the sim-
plest equation of state that describes real-fluid behavior,
the van der Waals equation, the term / �T̂���̂�3 is absent,
while the term / ���̂�5 exists. Furthermore, in most clas-
sical equations of state d�̂2=dT̂2 along the liquid-vapor
coexistence exhibits a discontinuity directly related to the
existence of the independent 5th-order term [10] in Landau
expansion. The existence of the independent 5th-order
term makes exact mapping of fluids into the lattice-gas
model by the conventional mixing of physical fields im-
possible. On the other hand, a renormalization-group treat-
ment of the 5th-order term resulted in an independent
critical exponent �5 ’ 1:3 [11] (not existing in the Ising
model). We show, however, that asymmetric fluids can be
consistently mapped into Ising criticality by applying so-
called ‘‘complete scaling’’ originally proposed by Fisher
and Orkoulas [12]. A redefinition of the order parameter,
suggested by complete scaling, results in elimination of the
5th-order term in Landau expansion, thus making the
renormalization-group treatment of the 5th-order term ir-
relevant for fluids.

Complete scaling suggests that all three physical fields
��̂, �T̂, and �P̂ � �P� Pc�=�ckBTc are equally mixed
into three scaling fields h1, h2, and h3. In the linear
approximation

 h1 � a1��̂� a2�T̂ � a3�P̂; (4)

 h2 � b1�T̂ � b2��̂� b3�P̂; (5)

 h3 � c1�P̂� c2��̂� c3�T̂: (6)

Before we apply complete scaling to describe asymmetry
in fluids, we note that the relations between scaling and
physical fields can be simplified. The coefficients a1 and b1

can be absorbed in two amplitudes in the scaling function
f�. The coefficients c1 and c2 are absorbed by making the
thermodynamic potential h3 dimensionless. The coeffi-
cient c3 � Ŝc is determined by the choice of the critical
value
of entropy. By adopting Ŝc � �kB�c�

�1�@P=@T�h1�0;c �

�dP̂=dT̂�cxc;c, the slope of the saturation-pressure curve at
the critical point, one obtains a2 � �a3�dP̂=dT̂�cxc;c and
b3 � 0. Finally, the scaling fields contain only two ampli-
tudes responsible for asymmetry in fluid criticality:

 h1 � ��̂� a3��P̂� �dP̂=dT̂�cxc;c�T̂	; (7)

 h2 � �T̂ � b2��̂; (8)

 h3 � ��P̂� ��̂� �dP̂=dT̂�cxc;c�T̂: (9)

As a result, while the order parameter in fluids is, in
general, a nonlinear combination of density and entropy
�1 � ���̂� b2���̂ Ŝ�	=�1� a3��̂�, the weakly fluctuat-
ing scaling density �2 in the first approximation is asso-
ciated with the density of entropy only, �2 � ���̂ Ŝ�.
There are two important thermodynamic consequences of
complete scaling that can be checked experimentally. First,
the diameter �d should contain two nonanalytical contri-
butions, associated with the terms a3�P̂ and b2��̂ in the
scaling fields:

 �̂ d � 1 � a3�1� a3��
2
1 � b2�2 � . . .

� D1j�T̂j
2� �D2j�T̂j

1�� �D3j�T̂j � . . . ;

(10)

where D1 � a3B
2
0=�1� a3� and D2 � b2A

�
0 =�1� ��,

with B0 and A�0 being the amplitudes in the asymptotic
scaling power laws for the liquid or vapor densities,
��̂ � �B0j�T̂j� � . . . , and isochoric heat capacity in
the two-phase region, CV=kB � A�0 j�T̂j

�� � . . . �A�0 �
A�0 =0:523� [5(c)]. Note that, since 2�< 1� �, the term
D1j�T̂j2� should dominate near the critical point. Second,
the presence of this term implies a so-called Yang-Yang
anomaly: The divergence of the heat capacity in the two-
phase region is shared among the second derivatives of
pressure and chemical potential [12]. Experimental verifi-
cation of complete scaling is a very challenging task. The
nonanalytical contributions in the diameter are usually not
large enough to be separated unambiguously. Attempts to
fit some experimental and simulation data to Eq. (10)
showed very poor conversions [13], mainly because of a
strong correlation between the linear and D2j�T̂j

1��

terms. Experimental tests of the Yang-Yang anomaly are
even more controversial since traces of impurities can
easily mimic such an anomaly, thus making any conclu-
sions unreliable [14].

We have been able to reliably determine the two asym-
metry coefficients a3 and b2 and to conclusively prove the
validity of complete scaling by combining accurate experi-
mental and simulation liquid-vapor coexistence and heat-
capacity data. We have exploited the fact that the coeffi-
cients D2 and D3 in Eq. (10) are actually coupled. As the
weakly fluctuating scaling density �2 is the critical part of
the entropy density, in the two-phase region at average
density � � �c

 �2 �
Z Ccr

V

kBT
dT � �

A�0
1� �

j�T̂j1�� � Bcrj�T̂j; (11)

where Ccr
V is the critical part of the isochoric heat capacity

and Bcr the so-called ‘‘critical background,’’ fluctuation-
induced analytical part of the heat capacity. The critical
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background can be obtained from a ratio between Bcr, A�0 ,
and the nonasymptotic heat-capacity amplitude A�1 [15]
and by subtracting the ‘‘ideal gas’’ from the total heat-
capacity background. Both procedures yield very similar
values of Bcr. Since D3 � �b2Bcr, Eq. (10) contains only
two adjustable coefficients, a3 and b2. We have examined a
number of systems, real fluids and simulated models
[3,16], for which we could find both heat-capacity and
coexistence data in the range j�T̂j< 0:01. In this range,
the terms of higher order than linear in Eq. (10) are within
experimental errors. Experimental data closer than j�T̂j<
10�4 were avoided as they might be affected by errors in �c

and Tc and by other factors, such as gravity, impurities, etc.
For all systems studied, we have been able to obtain
reliable values of Bcr and conclusively separate two sin-
gular contributions to the diameter. Two typical examples
that represent two different kinds of asymmetry in fluid
criticality are shown in Fig. 1.

In diameters of some fluids, such as SF6, C2F3Cl3, and
n� C7H16, the j�T̂j2� term dominates (a3 is relatively
large and positive), while in many other fluids, such as HD,
Ne, N2, and CH4, the two singular contributions in diame-
ter partially compensate each other (a3 is small and nega-
tive), creating an illusion of rectilinear diameter even close
to the critical point. In Fig. 2, the two asymmetry coeffi-
cients are plotted against the dimensional density �
 de-
fined as �
 � �c�8�

3
0�, where �0 is the amplitude of the

correlation length (representing the range of interactions)
obtained from the heat-capacity amplitude A�0 through the
two-scale factor of universality A�0 �c�

3
0 � 0:171 [5(c)]. A

general trend in the two sources of asymmetry is clear: The
j�T̂j2� singularity is a dominant contribution into the
singular diameter if the ratio of critical volume per mole-
cule ���1

c � to ‘‘interaction volume �8�3
0�’’ is large [17].

Assuming that the relations between physical fields and
scaling fields are not affected by fluctuations, we have
developed a method to obtain the asymmetry coefficients

a3 and b2 from mean-field (’’classical’’) equations of state.
By combining Eqs. (3) and (7)–(9), we obtain

 

a3

1� a3
�

2�21

3�11
�
�40

5�30
; b2 �

�21

�2
11

�
�40

5�30�11
;

(12)

with�ij � @i�j�=@�̂i@Tj. We have obtained a3 and b2 for
a few classical equations of state, the fine-lattice discreti-
zation model (crossover between the van der Waals fluid
and lattice gas) [18], the Debye-Hückel and Flory-Huggins
models. The coefficient of rectilinear diameter

 D �
a3

1� a3

6�11

�30
� b2

3�2
11

�30
�

a3

1� a3

�B2
0 � b2

� �CV
kB

;

(13)

where �B0 and � �CV are mean-field amplitudes of coexis-
tence densities and heat-capacity discontinuity. Close to
the critical point, the rectilinear diameter, affected by
fluctuations, splits into two nonanalytical terms, shifting
the critical density In Fig. 3, crossover between rectilinear
diameter and complete-scaling singular diameter is shown
for the van der Waals equation of state renormalized by
fluctuations [19]. A fluctuation shift in the van der Waals
critical density is controlled mainly by the j�T̂j2�

singularity since the van der Waals value of a3 is relatively
large [a3=�1� a3� � b2=�̂11 � 0:2]. In the same
fashion, we have calculated crossover between the
discontinuity ��d2�̂=dT̂2�cxc���

2
11=�30�����21=�11��

�3�40=5�30�	��a3=�1�a3��� �CV=kB� and a divergence
known as the Yang-Yang anomaly �d2�̂=dT̂2�cxc �

a3�d
2P̂=dT̂2�cxc � �a3=�1� a3�A

�
0 j�T̂j

��. A renor-
malization-group treatment of the ���̂�5 term instead pre-

FIG. 1. Singular diameters in (a) SF6 and (b) N2. Experimental
data: SF6 [16(c)] and N2 [3]. Curves: Solid—fit to Eq. (10);
dashed—2� term; dotted—1� � and linear terms. Heat-
capacity source [16(d)] (SF6) and [16(i)] (N2).

FIG. 2. Complete-scaling asymmetry coefficients a3 and b2 vs
reduced critical density �
 � �c�8�

3
0�. VDW is a modified-by-

fluctuations van der Waals fluid [19] with a short interaction
range [R � ��
�1=3 � 0:5]. HCSW is a simulated hard core
square well model [13]. For a simulated restrictive primitive
model (RPM) [13] a3 � 0:14 and b2 � �0:48 (off scale) with
�
 ’ 0:22. The solid curves are given as a guide to the eye.
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dicts a cusp, containing a term / j�T̂j�5���� � j�T̂j0:865

[10]. Similarly, there should be a term / a3=�1�
a3�j�T̂j��	 instead of j�T̂j�5�	 [20] in the so-called
Tolman’s length, a curvature correction to the surface
tension of a liquid droplet.

We conclude that the asymmetry in near-critical fluids
originates from two sources: One is a coupling between the
density and density of entropy; another one is a nonlinear
coupling between the density and molecular volume. Both
sources can be incorporated into symmetric Ising criticality
by a proper mixing of physical fields into scaling fields.
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