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We report comprehensive simulations of the critical dynamics of a symmetric binary Lennard-Jones
mixture near its consolute point. The self-diffusion coefficient exhibits no detectable anomaly. The data
for the shear viscosity and the mutual-diffusion coefficient are fully consistent with the asymptotic power
laws and amplitudes predicted by renormalization-group and mode-coupling theories provided finite-size
effects and the background contribution to the relevant Onsager coefficient are suitably accounted for.
This resolves a controversy raised by recent molecular simulations.
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Introduction.—Thermodynamic and transport properties
exhibit critical-point singularities with exponent values
and amplitude ratios that are the same for systems belong-
ing to the same universality class. As regards static critical
behavior, it has been well established that fluids of mole-
cules with short-range interactions belong to the universal-
ity class of three-dimensional Ising-type systems [1]. It is
expected that the dynamic critical behavior of fluids con-
forms to that of model H in the nomenclature of
Hohenberg and Halperin [2]. Recently, there has been a
revival of interest in critical phenomena, one reason being
that computer-simulation techniques have matured suffi-
ciently that they can provide interesting detailed informa-
tion concerning the static critical behavior [3–5]. For
instance, recent Monte Carlo simulations have provided
new insights concerning the nature of the scaling fields in
asymmetric fluids [5].

The status of computer simulations of the dynamic
critical behavior of fluids is much less satisfactory.
Specifically, on the basis of a recent molecular dynamics
simulation of a binary fluid Jagannathan and Yethiraj (JY)
[6] concluded that the dynamic exponent xD that governs
the slowing down of critical fluctuations differs substan-
tially from the value predicted by renormalization-group or
mode-coupling theory [2,7]. It has also been noted that this
conclusion disagrees with reliable experimental evidence
[8].

To address the general issue we have undertaken a
comprehensive study of the dynamic critical behavior of
a symmetric Lennard-Jones mixture (A� B) near its con-
solute point. We find that the data for the transport property
that determines the nature of critical slowing down are
significantly affected by finite-size effects and by a ‘‘back-
ground’’ contribution arising from fluctuations at small
length scales. After properly accounting for both these
effects our extensive simulations of the critical dynamics
prove to be fully consistent, both with current theoretical
predictions and with the best available experimental
evidence.

The model.—Starting from the standard (12, 6) Lennard-
Jones potential with parameters "�� and ��� (�, � � A,
B) we construct a truncated potential which is strictly zero
for r > rc and makes both the potential and the force
continuous at r � rc [9]. For the parameters, we take
�AA � �BB � �AB � �, "AA � "BB � 2"AB � ", rc �
2:5�, and define the reduced temperature as T� �
kBT=". The total particle number N � NA � NB and the
volume V � L3 are chosen so that the reduced density
�� � ��3 � N=V is unity and the simulation box edge
is L=� � L� � N1=3. For these parameters the system is
far from solid-liquid and liquid-gas transitions in the tem-
perature regime of interest here.

In order to evaluate the results of computer simulations
of dynamic critical behavior, accurate information regard-
ing the static critical behavior is a prerequisite. We have
obtained this by using a semi-grand-canonical Monte Carlo
(SGMC) approach [9–11]. In the SGMC method, in addi-
tion to displacement moves, the particles may switch iden-
tity (A! B! A) with both the energy change �E and the
chemical potential difference �� � �A ��B entering the
Boltzmann factor. For the case �� � 0, of interest here,
one has hxAi � hxBi � 1=2 (with x� � N�=N) for T > Tc.

Static properties.—Since our focus is on the dynamic
critical behavior, we simply state the results found for the
static behavior [9]. An accurate, unbiased estimate for the
reduced critical temperature was obtained by plotting the
fourth-order cummulant UL � h�xA � 1=2�4iL=h�xA �
1=2�2i2L as a function of T for various box sizes L and
identifying Tc from the asymptotically common intersec-
tion point [5,9,12]: this yields T�c � 1:4230� 0:0005 [9].
The concentration susceptibility ��T� was calculated from
kBT� � ��T� � N�hx2

Ai � hxAi
2� (T > Tc). The correla-

tion length ��T� was determined from Ornstein-Zernike
plots of the Fourier transform of the concentration-
concentration correlation function, Scc�q� � T���=	1�
q2�2 � . . .
. In the thermodynamic limit (i.e., in the ab-
sence of finite-size effects) these properties diverge as
�� � �0��	 and � � �0��
, where � � �T � Tc�=Tc
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and we may adopt 	 � 1:239 and 
 � 0:629 as the uni-
versal critical exponents for the three-dimensional Ising
universality class [13]. Our SGMC simulations [9] then
yield �0 � 0:076� 0:006 and �0=� � 0:395� 0:025.

Dynamics.—We investigated the dynamic behavior by
implementing a microcanonical molecular dynamics (MD)
simulation [14]. For this study, multiple independent initial
configurations were prepared from SGMC runs with 5�
105 Monte Carlo steps (MCS) per particle. This was fol-
lowed by a microcanonical thermalization for 2� 105 MD
steps in the NVT ensemble using the Andersen thermostat
[14] before the production runs commenced. For the MD
simulations, the particle masses were taken equal: mA �
mB � m. The standard Verlet velocity algorithm [14] was
employed with a time step �t� � 0:01=

������
48
p

[in units t0 �
�m�2=��1=2].

Self-diffusion.—Restricting attention to temperatures
T 
 Tc and to the critical concentration xc � xA � xB �
1=2, the symmetry of our model dictates that the self-
diffusion constant is the same for A and B particles: DA �
DB � D. We have calculated the reduced self-diffusion co-
efficient D� from mean square displacements via
��2=t0�D� � D � limt!1h	~ri�0� � ~ri�t�
2i=6t, where the
average h�i includes all A and B particles. The results
are shown in Fig. 1(a) as a function of �. No anomalous cri-
tical behavior is detected and the linear behavior is con-
sistent with previous simulation studies [6,15]. MD cal-
culations [16] have suggested a weak singularity in the
self-diffusion near vapor-liquid criticality but no corre-
sponding anomaly has yet been detected experimentally
[17].

Shear viscosity.—The shear viscosity is expected to
diverge as �x� with x� ’ 0:0679 according to recent theo-
retical calculations [18]; this value is in good agreement
with the best available experimental information [8,19].
We have calculated the reduced shear viscosity�� from the
appropriate Green-Kubo formula [20]

 �� � �t30=�Vm
2T��

Z 1
0
dth�xy�0��xy�t�i; (1)

where the pressure tensor is �xy�t� �
PN
i�1	mivixviy �

1
2

P
j��i�jxi � xjjFy�j~ri � ~rjj�
 with ~F and ~vi the force be-

tween particles i and j and the velocity of particle i, re-
spectively. The numerical data for �� obtained from simu-
lations with N � 6400 particles are shown in Fig. 1(b). As
always in MD simulations, accurate estimation of the shear
viscosity is difficult and the �5% error bars prevent us
making any strong statements about the singular behavior
of ��. But the slight increase of � as T ! Tc is consistent
with the predicted divergence �� � �0�

�
x� with x� �
0:068 (and 
 ’ 0:63, as above); see Fig. 1(b). Furthermore,
on imposing the exponent values, a least-squares fit yields
the amplitude estimate �0 � 3:87 � 0:3.

Mutual diffusion.—Dynamic renormalization-group and
mode-coupling theories predict that mutual-diffusion co-
efficients DAB�T� vanish as ��xD where

 xD � 1� x� ’ 1:068; (2)

so that there is only one independent exponent character-
izing the dynamic critical behavior of fluids [2]. This
relation has been verified experimentally [21].

The mutual-diffusion coefficient DAB � ��2=t0�D�AB is
related to a corresponding Onsager coefficient L via
D�AB � L=�� [22]. We have calculated D�AB by adopting
the result ���T� � �0��	 previously obtained, and using
MD simulations to determine L�T� from the appropriate
Green-Kubo formula [20]

 L �T� � �t0=NT��2�
Z 1

0
dthJABx �0�JABx �t�i; (3)

where ~JAB�t� � xB
PNA
i�1 ~vi;A�t� � xA

PNB
i�1 ~vi;B�t�, in which

~vi;� is the velocity of particle i of species �.
If, somewhat naively, one fits the numerical values for

DAB obtained for N � 6400 particles and � > 0:01 to a
power law of the form D�AB / �

�xeff one finds a value of
about 1.6 for the effective critical exponent; this is even
larger than the corresponding value xeff � 1:26� 0:08
derived by Jagannathan and Yethiraj [6] from their MD
simulations. Both values differ substantially from the theo-
retical prediction recorded in (2).

To resolve this issue we must focus on the Onsager
coefficient L since the simulation data for �� in our model
are consistent with Ising criticality [9]. While the diver-
gence of �� near Tc is strongly dominated by long-range
fluctuations, it is known that the Onsager coefficient of
fluid mixtures near a consolute point (or, its equivalent, the
thermal conductivity of a fluid near a vapor-liquid critical
point) contains a critical enhancement �L�T� due to long-
range fluctuations together with a significant background
which arises from fluctuations at small length scales
[22,23] and has weak temperature dependence [24]: thus
we write
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FIG. 1. (a) Reduced self-diffusion constant D� for a system of
N � 6400 particles as a function of T. The dashed line guides
the eye and shows that D�Tc� is nonzero. (b) Log-log plot of the
reduced shear viscosity for the same system: the fitted line
embodies the theoretical values for 
 and x�.
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 L �T� � �L�T� �Lb�T�: (4)

Such a separation has proved essential in reconciling ex-
perimental data for DAB�T� with theory [24].

In Fig. 2 we show a plot vs � of the numerical data
obtained for L from the simulations with N � 6400 par-
ticles. The data do indeed suggest the presence of a
significant background. Theory predicts that �L satisfies
a Stokes-Einstein relation of the form �L �
RDT����=6
���, where RD is a universal dynamic am-
plitude ratio that is of order unity [2,23]. On accepting the
exponent (2) we thus obtain

 �L � QT���
� with 
� � x�
 ’ 0:567 (5)

and x� � �	=
� � xD ’ 0:902. Adopting the value RD ’
1:05 [23] we find, using the values for �0, �0, and �0

reported above, that a sound theoretical estimate of the
amplitude Q for our model is

 Q � �2:8� 0:4� � 10�3: (6)

Finite-size scaling.—Since the background Lb�T� de-
rives from atomic length scales, it should vary little with L.
However, the possibility of significant finite-size effects on
the critical part, �L�T�, must be recognized and allowed
for. Note, in particular, that although static properties may
(as in [9]) exhibit negligible finite-size deviations for the
range of (T � Tc) and L simulated (see Fig. 3), the same
need not be true for transport coefficients. To tackle this
problem we write the finite-size scaling ansatz [5,25,26] as

 �L=T� � QW�y���
� ; (7)

where y � L=�while W�y� is a finite-size scaling function
that must vary as W0yx�	1�O�y1=
�
 for small y, since

�L�Tc;L� is finite for L<1 [5,25,26]. For large y one
may quite generally write

 W�y� � 1�W1e
�ny=y � . . . ; (8)

where W�1� � 1 is needed to reproduce (5) when L! 1
while, for static properties in short-range systems, n is a
small integer [5,25,26]. However, for dynamic coefficients,
where long-time tails, etc., may enter, one must be pre-
pared for n � 0 implying only an L� decay of finite-size
deviations; the exponent  demands more detailed, cur-
rently unavailable theory.

To analyze the L�T;L� data a scaling plot of W L�T� �
��L=T���
� vs y is desirable: by (7) and (8) this should
approach Q for large y. But the background Lb�T�, albeit
slowly varying, is unknown. To meet this challenge, we
introduce an effective background parameter Leff

b , and
adjust it to optimize data collapse: see Fig. 3 which
presents W L�T� for three illustrative values of Leff

b vs
the bounded variable 	y=�y0 � y�
x� in which x� is taken
from (5) while, purely for convenience of display, we have
set y0 � 7. The optimal value, which serves as a rough
estimate of Lb�Tc�, proves to be Leff

b � �3:3� 0:8� �
10�3 [9]. For this assignment we find that a good fit (see
the dashed line in Fig. 3) is provided by W L ’ Q=	1�
p0=y�1� y2=p2

1�

x� with p0 � 5:8� 0:5 and p1 ’ 13:8

while Q � �2:7� 0:4� � 10�3. This estimate for Q is in
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FIG. 2. Variation with temperature of the Onsager coeffecient
L�T� for a system of N � 6400 particles. Note the expansion of
the scale for � � 0:1. The dotted line represents an effective
background contribution: see text.
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FIG. 3. Finite-size scaling plots of the critical part of the
Onsager coefficient for trial values of the effective background
Leff
b with y � L=�. We have accepted the theoretical value x� ’

0:90 and, for convenience, set y0 � 7. The filled symbols rep-
resent data for different system sizes at T� � 1:48. The arrow on
the right marks the theoretical value (6) for the critical amplitude
Q. The dotted lines guide the eye; the dashed line is a scaling-
function fit embodying the optimal value of Leff

b : see text.
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gratifying agreement with the theoretical value reported in
(6).

The quantitative significance of the finite-size effects
can be appreciated from Fig. 4 where the scaling-function
fit has been used to estimate L�T� for N � 2:56� 104 and
N ! 1. Note also that the fit for W L�y� corresponds to
n � 0 and � 3 in (8). Further exploration suggests that if
an ultimate exponential decay does arise [e.g. if n � 1 in
(8)] it sets in only for y � L=�� 30.

In summary.—The extensive simulations we have per-
formed for the transport properties near the demixing point
of our symmetric but otherwise not unrealistic binary fluid
model are, when appropriately analyzed with due attention
to strong finite-size effects and a background contribution,
completely consistent with current theoretical predictions
and the best available experimental data. Not only are the
theoretical exponent values and the dynamic exponent
relation (2) in accord with the data, but the amplitude value
(6) is directly confirmed. While increased computer power
and more refined analysis might eventually provide more
stringent tests of theory, such as the value of RD, the
necessary resources appear rather demanding.
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