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We study the long-time evolution of waves of a thin elastic plate in the limit of small deformation so
that modes of oscillations interact weakly. According to the theory of weak turbulence (successfully
applied in the past to plasma, optics, and hydrodynamic waves), this nonlinear wave system evolves at
long times with a slow transfer of energy from one mode to another. We derive a kinetic equation for the
spectral transfer in terms of the second order moment. We show that such a theory describes the approach
to an equilibrium wave spectrum and represents also an energy cascade, often called the Kolmogorov-
Zakharov spectrum. We perform numerical simulations that confirm this scenario.
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Introduction.—For more than 40 years it has been estab-
lished that long-time statistical properties of a random
fluctuating wave system possess a natural asymptotic clo-
sure because of the dispersive nature of the waves and of
the weakly nonlinear interaction between them [1,2]. This
‘‘weak turbulence theory’’ has been shown to be a powerful
method for studying the evolution of nonlinear dispersive
wave systems [3,4]. It follows that the long-time dynamics
is driven by a kinetic equation for the distribution of
spectral densities. This method has been applied to surface
gravity waves [1,5], capillary waves [6], plasma waves [7],
and nonlinear optics [8] for instance. The actual kinetic
equation has nonequilibrium properties similar to the usual
Boltzmann equation for dilute gases, conserving energy
and momentum, and it exhibits an H theorem driving the
system to equilibrium, characterized by the Rayleigh-Jeans
distribution. Most important, besides the elementary equi-
librium (or thermodynamic) solution, Zakharov has shown
[7] that power-law nonequilibrium solutions also arise,
namely, the Kolmogorov-Zakharov (KZ) solutions or KZ
spectra, which describe the exchange of conserved quan-
tities (e.g., energy) between large and small length scales.

Experimental evidence of KZ spectra have been found in
the ocean surface [9] and in capillary surface waves [10–
12]. Numerical simulations have also shown the existence
of KZ spectra in weak turbulent capillary waves [13] and,
more recently, in gravity waves [14].

In this Letter an oscillating thin elastic plate is consid-
ered [15]. Adding inertia to the well known (static) theory
of thin plates, one finds the existence of ballistic dispersive
waves [16]. They interact via the nonlinear terms that are
weak if the plate deformations are small. Understanding
the interaction between these waves is thus crucial to
describe acoustical properties of the plates. In fact, non-
linear solitary waves have been observed on the surface of
a cylindrical shell that show balance between nonlinear
effects and dispersion [17]. However, we develop here the
first weak turbulence theory for the surface deflection on

plate dynamics. We find that the bending waves travel
randomly through the system and interact resonantly be-
tween each other via the weak nonlinearities. The mathe-
matics behind the resonant condition is formally identical
to the conservation of energy and momentum in a classical
gas. In this sense an elastic plate is formally equivalent to a
2D gas of classical particles interacting with a nontrivial
scattering cross section. An isolated system evolves from a
random initial condition to a situation of statistical equi-
librium as a gas of particles does. In addition to statistical
equilibrium for isolated systems, the weak turbulence the-
ory predicts here an energy cascade from a source of
energy (a driving forcing) to a dissipation scale typical of
irreversible processes.

More precisely, we have in mind an elastic thin plate
under an external low frequency (few times the slowest
plate mode) random forcing. Typically the gravest mode
for a 10� 10 cm2 free bounded steel sheet of 0.1 mm thick
is about 50 Hz and is a bit higher for a clamped sheet.
Internal resonance among modes buildup an energy cas-
cade from the injection scale to small scales where it is
ultimately dissipated mostly because of the boundaries, the
air entraintement, viscoelastic flows, or heat transfer. A
genuine cascade should setup if dissipation occurs at small
scales only. One needs to be careful concerning the heat
transfer since the damping coefficient does not depend on
the oscillation frequency there. However, heat loss is a
weak effect and can be in general neglected (see section 30
in Ref. [18]): indeed, for the above example, the heat loss
time scale is about 15 times smaller than the slowest
oscillation at room temperature. As in fluids, viscosity in
solids acts only at small scale. Finally, in a real experiment
the boundaries play an important role because of the finite
value of the experimental setup impedance. Such a damp-
ing coefficient grows linearly with wave number and is
probably the most relevant source of dissipation.
Therefore, it seems possible that energy cascades from
the scale of the plate to the dissipation scale.
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Moreover, while there is often a lack of direct observa-
tions of weak turbulence predictions, we exhibit numeri-
cally relaxation to equilibrium and energy cascade for the
plate dynamics, confirming the scenario presented above.
The plate dynamics is illustrated in Fig. 1 for an isolated
system where the plate deformations are shown at initial
time and after a long evolution.

Theory.—The starting point is the dynamical version of
the Föppl–von Kármán equations [18] for the plate defor-
mation ��x; y; t� and the stress function ��x; y; t�:
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where h is the thickness of the elastic sheet. The material
has a mass density �, a Young’s modulus E, and a Poisson
ratio �. � � @xx � @yy is the usual Laplacian and the
bracket f�; �g is defined by ff; gg � fxxgyy � fyygxx �
2fxygxy, which is an exact divergence, so Eq. (1) preserves
the momentum of the center of mass, namely
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��x; y; t�dxdy � 0. The first term on the right-hand

side of (1) represents the bending while the second one
f�; �g, together with Eq. (2), represents the stretching [19].

Despite the complexity of Eqs. (1) and (2) the system
presents a Hamiltonian structure that is straightforward in
Fourier space. Defining the Fourier transforms as �k�t� �
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lator with the usual ballistic dispersion relation of bending
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2k4. The Hamiltonian structure becomes evi-
dent if we define as canonical variables the deformation
�k�t� and the momentum pk�t� � �@t�k�t�. Finally, the
canonical transformation �k �
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p allows us to write the

wave equation in a diagonalized form: dAk
dt � i!kAk �

iN3�Ak�, where N3��� is the cubic nonlinear term.
Weak turbulence theory.—This nonlinear oscillator has

two distinct time scales, the rapid oscillation i!kAk and the
weak nonlinearity: iN3�Ak�. Then, following the approach
of [4], one changes Ak � ak�t�e�i!kt which removes the
rapid linear oscillating term:
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where we define ask with the two possible choices s � � or
� relative to the propagation direction, such that a�k � ak
while a�k � a	�k. The interaction term reads: Jk1;k2;k3;k4
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, where P 234 is the sum over
the six possible permutations between 2, 3, and 4. The next
step consists of writing a hierarchy of linear equations for
the averaged moments: has1
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multiscale analysis provides a natural asymptotic closure
for higher moments: the fast oscillations drive the system
close to Gaussian statistics and higher moments are written
in terms of the second order moment: hak1

a	k2
i �

nk1
��2��k1 � k2�, where nk is called the wave spectrum.

The wave spectrum thus satisfies a Boltzmann-type
kinetic equation describing a slow exchange of energy
from one mode to another through four waves resonance:
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As for the usual Boltzmann equation, Eq. (4) conserves
‘‘formally’’ [20] the total momentum per unit area P �
h
R
knk�t�d

2k and the kinetic energy per unit area E �
h
R
!knk�t�d2k, and exhibits an H theorem: let S�t� �R

ln�nk�d
2k be the nonequilibrium entropy, then dS=dt 


0, for increasing time. However, despite the four waves
interaction type kinetic Eq. (4), the ‘‘wave action’’ N �R
nk�t�d

2k is not conserved. The kinetic Eq. (4) describes
thus an irreversible evolution of the wave spectrum towards
the Rayleigh-Jeans equilibrium distribution which reads,
when P � 0:

 neq
k � T=!k; (5)

here T is called, by analogy with thermodynamics, the
‘‘temperature’’ (with units of energy/length, i.e., a force),
which is naturally related to the initial energy by E0 �

h
R
!kneqd

2k � hT
R
d2k. The quantity

R
d2k is the num-

ber of degrees of freedom per unit surface. Therefore each
degree of freedom takes the same energy: hT. Naturally,
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FIG. 1. Zoom over a portion of the surface plate deflection
��x; y�. The left-hand image is the initial condition while the
right-hand one represents a long-time evolution of the plate.
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for an infinite system this number diverges (as well as the
energy). This classical Rayleigh-Jeans catastrophe is al-
ways suppressed due to some physical cutoff discussed
above. Numerical simulations on regular grid provide
also a natural cutoff kc � �=dx, where dx is the mesh
size, which gives E0 � �hTk2

c for a large plate.
Kolmogorov spectrum.—In addition, isotropic nonequi-

librium distribution solutions can arise [7]. They have a
major importance in the nonequilibrium process for the
energy transfer between different scales. These solutions
can be guessed via a dimensional analysis argument but
they are, in fact, exact solutions of the kinetic equation.
Despite some differences with the usual kinetics equation,
the Zakharov method can be applied here. Assuming an
isotropic spectrum nk � njkj and integrating over the an-
gles the scattering amplitude jJk1k2k3k4

j2��2��k1 � k2 �

k3 � k4�, the new scattering amplitude depends only on
the modulus ki � jkij, and it can be written as a function of

the frequencies !ki : S!1;!2;!3;!4
� 1

6P 234

R jJk1k2k3k4
j2

jk2�k3j
d’4.

Since the degree of homogeneity of jJj2 in k is zero, S
scales as 1=k2 � 1=!k.

Looking for a power-law solution nk � A!��k , the eight
terms of the collisional integral in the right-hand side of (4)
decompose into 3Coll2$2 � Coll3$1, defined by
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Here � � 3�� 2. For Coll2$2 one has that s � 1 and the
integration domain is over �� � f0 � !2 � !k;!k �
!2 � !3 � !kg and !1 � !2 �!3 �!k, while for
Coll3$1 one has that s � �1 and the integration is over
�� � f0 � !2 � !k; 0 � !3 � !k �!2g, with !1 �
!k �!2 �!3. The collisional terms scale as Coll2$2 �
C����!

1�3�
k and Coll3$1 � C����!

1�3�
k . The coeffi-

cients C
��� are pure real functions depending only on
�. Although, the explicit form of the scattering matrix
S!1;!2;!3;!4

is not simple, its value can be bounded in
both domains �
 and the collision term converges for
suitable values of � 2 �0:5; 1:2� validating the locality
condition. Both coefficients vanish with double degeneracy
at � � 1 indicating that the KZ spectrum: nKZ

k �
1
!k
� 1

k2

coincides with the Rayleigh-Jeans solution, Eq. (5). It
means, in fact, that the energy flux is zero. The double
degeneracy at � � 1 reveals the existence of a logarithmic
correction, similarly to the case of the nonlinear
Schrödinger equation (NLS) in two dimensions [8]. As
stated in Ref. [21] the logarithmic correction produces a
divergent result for NLS. In our case, it is possible to show
that all integrals are finite, indicating a finite energy flux
[22]. Thus one has

 nKZ
k � C

hP1=3�2=3

�12�1� �2��2=3

ln1=3�k	=k�

k2 ; (6)

where P is the energy flux. C and k	 are real numbers.
For � � 0 and 3�� 2 � 0 the collisional part Coll2$2

also vanishes. This solution corresponds to the wave action
equipartition (� � 0) with a second KZ spectrum nk �
1=!2=3

k related to wave action inverse cascade. However,
this spectrum does not vanish the second part of the colli-
sion term Coll3$1, in agreement with the nonconservation
of the wave action mentioned above. In conclusion there
exist only a single cascade: the energy cascade (6).

Numerical simulation.—Numerical simulations of the
full nonlinear system of Eqs. (1) and (2) are first performed
to validate the formation of the equilibrium spectrum
Eq. (5). In all the presented results c � 1 and h � 1=2 so
that the linear plate size is the only parameter of the
numerics. We have implemented a pseudospectral scheme
using FFT routines [23], with periodic boundary condi-
tions: the linear part of the dynamics is calculated exactly

in Fourier space: �k�t� �t� � �k�t� cos�!k�t� �
_�k�t�
!k
�

sin�!k�t�. The nonlinear terms in (1) and (2) are first
computed in real space and the integration in time is then
performed in Fourier space using an Adams-Bashford
scheme. It interpolates the nonlinear term of (1) as a
polynomial function of time (of order one in the present
calculations). Energy is conserved within a 1=100 relative
error. As initial conditions, we have taken: �k �
�0e

�k2=k2
0ei’k with ’k a random phase, and a zero velocity

field _�k � 0. As time evolves, the random waves oscillate
with a disorganized behavior, as shown in Fig. 1. After a
long time the system builds up an equilibrium distribution
in agreement with the Rayleigh-Jeans nk � T=k2 spectrum.
That is, for the plate deflection hj�kj2i � X2

knk �
nk
�!k
�

T
�h2c2k4 as shown in Fig. 2.

Nonequilibrium distributions can also be observed nu-
merically. One requires to input energy and pump wave
action at low wave numbers (k < kin) and to dissipate
energy at large ones (k > kout) defining a window of trans-
parency kin < k< kout. This artifact is implemented by
adding a term �Fk � 	k _�k� to the plate Eq. (1).
Following [14] the forcing term Fk is a nonzero random
force for k < kin, and 	k is a fictitious linear damping for
short length scales. Figure 3 shows a good agreement with
the predicted KZ spectrum Eq. (6) with an exponant for the
logarithmic correction 1=3 (inset of Fig. 3).

Conclusions.—We have successfully applied weak tur-
bulence theory for the new case of elastic thin plates. The
results allow for an analogy between an important property
of fluid dynamics and the mechanics of elastic plates.
Numerical simulations exhibit both the convergence to-
wards statistical equilibrium for a free system and an
energy cascade when forcing and dissipation are intro-
duced, as predicted by the weak turbulence analysis. An
important consequence is the nonexistence of an inverse
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cascade nk � 1=k4=3, as usually found for four wave inter-
action systems such as gravity waves or NLS. The results
presented here suggest also a new experimental way of
studying weak turbulence through the analysis of the waves
produced by the plate oscillations [24].

For large deformations the elastic plate equations are
still valid, but stretching cannot be longer treated as a weak
perturbation and a ‘‘wave breaking’’ phenomenon is ex-
pected: energy focuses into localized structures as ridges
[25] and conical surfaces (named d-cones) [26].
Amazingly, a regime dominated by ridges shows a power
spectrum j�kj2 � 1=k4 similar to the weak turbulence spec-
trum derived here. On the other hand for d-cone-dominated

regimes, as seemingly observed in [27], the expected spec-
trum should follow j�kj2 � 1=k6.
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FIG. 3 (color online). Average power spectrum hj�kj2i for the
energy cascade. The injection scale is kin 2 �0:1; 0:25� while the
dissipation is at kout � 3. The line plots the power law 1=k4.
Inset plots k4hj�kj

2i vs log�k	=k� in logarithmic scale with k	 �
kout. The straight line corresponds to z � 1=3.
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FIG. 2 (color online). Numerical simulation for a 512 square
plate using 10242 modes with a mesh size dx � 1=2. The initial
condition is with k0 � 1 and �0 � 0:02. We plot the power
spectrum of the mean deflection hj�kj2i versus wave number k
after 1200 time units. The line plots the Rayleigh-Jeans power
law 7� 10�6=k4 which gives T � 2� 10�6 in agreement with
the equipartition of the initial energy. The inset plots the evolu-
tion of the wave action with time.
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