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Flowing Crystals: Nonequilibrium Structure of Foam
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Bubbles pushed through a quasi-two-dimensional channel self-organize into a variety of periodic
lattices. The structures of these lattices correspond to local minima of the interfacial energy. The ‘‘flowing
crystals’’ are long-lived metastable states, a small subset of possible local minima of confined quasi-two-
dimensional foams [P. Garstecki and G. M. Whitesides, Phys. Rev. E 73, 031603 (2006)]. Experimental
results suggest that the choice of the structures that we observe is dictated by the dynamic stability of the
cyclic processes of their formation. Thus, the dynamic system that we report provides a unique example of
nonequilibrium self-organization that results in structures that correspond to local minima of the relevant
energy functional.
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FIG. 1. Experimental system. (a) An optical micrograph of the
FFD (the width of the outlet channel is w � 1 mm, and the
height of the device is h � 25 �m). The inlet gas pressure was
set to p � 20 kPa, and the rate of flow of the liquid (a water-
surfactant mixture) to Q � 0:28 �L=s. The self-assembled lat-
tice comprises bubbles of nearly circular shapes. (b) A schematic
diagram illustrating the aspect ratio of the outlet channel: the
bubbles are ‘‘squeezed’’ into discoid shapes. For the calculations
of the interfacial energy of the lattices, we assume that the
interfaces between bubbles are vertical (c). In reality, (d) they
are curved because the liquid wets the walls of the microchannel
and gas does not contact it.
There is clear division between the equilibrium and the
nonequilibrium processes of self-organization. In the first
case, irrespectively of the details of the interactions be-
tween the constituents of the system, it assumes a configu-
ration corresponding to the minimum of the relevant free
energy functional. For nonequilibrium processes such a
unifying ‘‘extremum’’ principle is not yet available [1–
3]. It is nonetheless clear that the language of energies is,
for the dynamical systems, inadequate. Taking just two of
the few paradigm examples: although it is possible to
rationalize formation of patterns in the convective [4,5]
or reactive [6,7] systems, in neither of them it is possible to
even identify the spectrum of energies of the resulting
patterns. Here we show a model system—a system that
produces a set of distinct structures of confined quasi-two-
dimensional foams—that couples the dynamics of forma-
tion of the structures with their interfacial energies. The
foams produced in our system are metastable; their archi-
tectures correspond to local minima of interfacial energy.
Yet they are not created through a process of relaxation of
the interfacial energy from an initially random arrange-
ment. These structures are an immediate result of a process
of placing new bubbles into the channel already occupied
by ordered foam: a process that can be viewed as a limit
cycle of the system. The stability of these limit cycles,
corresponding to different lattices, can be altered by a
change of the rate of flow of the fluids through the device.

Foams—for the ease of their visualization, and the
simplicity of their free energy functional—have been im-
portant as a model system in identifying the selection
principles that guide formation of patterns. Foams served
for experimental verification [8–11] of conjectures on the
famous problem of minimization of the interfacial area of
tiles filling either a two- [12] or a three-dimensional
[8,10,11] space. It has been recently shown [13] that con-
finement of foams brings out a variety of structures that are
not observed without the presence of boundaries. Here we
show that foams might also serve as a model system in the
study of dynamic pattern formation.
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We generate bubbles using a flow-focusing device (FFD)
[14] [Fig. 1(a)] that comprises a planar network of ducts of
rectangular cross section [15] and uniform height h �
25 �m. The heart of the FFD is formed by a junction of
three inlet channels: the two outer channels supply the
liquid [an aqueous solution of the surfactant Tween 20
(2 wt. %)] at a net rate of flow Q (supplied from a syringe
pump Harvard Apparatus PhD 2000), and the central inlet
delivers gas (nitrogen) at an externally controlled pressure
p. The syringe pump delivers significantly fluctuating
pressure, and in order to reduce these fluctuations, we
also used a pressurized container to deliver the liquid
[16]. Liquid and gas form an interface at the junction,
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FIG. 2. Flowing crystals. (a)–(e) Optical micrographs of the
dynamically self-organized lattices observed at p�110 kPa and
Q�0:5�L=s (w�750�m, h�25�m). We call the five ob-
served lattices hex-one (a), hex-two (b), hybrid (c), snakeskin (d),
and hex-three (e). We ordered the lattices according to their cal-
culated nondimensional ‘‘energy’’—a parameter l� which is the
ratio of the total perimeter of the N bubbles comprising the trans-
lational unit cell to the total perimeter of N regular hexagons of
the same surface area as the surface area of the planar cross
section of the bubbles (l� decreases from top to bottom). (f) The
fraction Pi of time that each lattice is produced depends on the
pressure p applied to the gas inlet (note that p=Q � const).
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and the stream of gas enters the orifice positioned down-
stream of the junction, inflates a bubble in the outlet
channel, breaks, retracts, and the process then repeats.
We monitored the flow with a temporal resolution of
20 �s using a high-speed camera (Phantom V7).

The bubbles are typically monodisperse, with a coeffi-
cient of variation below 2%–3% of the mean diameter
[14]; their volume V scales as V / p=Q, which allows us
to maintain a constant V at different rates of flow, provided
that we hold the ratio (p=Q) constant [14]. The width w of
the outlet channel (here w � 750 �m) is much larger than
its height h (w=h�30); typically, the volume of the bubble
is larger than the volume of the largest sphere that can be
inscribed inside the channel (V � �h3=6). The bubbles
adopt discoid shapes [Figs. 1(b) and 1(d)], and we treat
them as essentially two dimensional [Fig. 1(c)]: we refer to
the size of the bubble as the effective diameter d of the top
interface d � �4A=��1=2, where A is the surface area of
that interface. Since A does not change upon distortion of
the shape of the bubble, only the length l of the its circum-
ference contributes effectively to the interfacial energy
E � ��2A� hl� of a bubble (� is the interfacial tension).

We approximate the volume fraction� of the bubbles by
the fraction of the area of the floor of the channel occupied
by the bubbles; this approximation neglects the curvature
of the interfaces in the cross section of the channel
[Figs. 1(c) and 1(d)]. At low values of �, bubbles flow in
disordered packs. At higher values of �, bubbles assemble
into ordered, flowing lattices [14] [the maximum packing
fraction of disks on an unbounded plane is �max �
�=�2

p
3� � 0:91; in the presence of the walls, �max is

smaller and its value depends on the value of (d=w)]. In
lattices obtained at � � �max, the bubbles remain circular
[Fig. 1(a)]; these structures are determined by elastic
shape-restoring interactions between them, and although
the system is not in equilibrium, since the shape of the
bubbles minimizes their interfacial energy, the geometry of
these lattices can be understood—at least locally—in
terms of the minimum of their energy. Importantly, for
given values of d=w and � for which bubbles organize
into an ordered lattice, there is a unique structure (either
rhombic or hexagonal) that we observe.

For � � 1, the bubbles become significantly distorted,
and for any given value of (d=w), we observe a family of
distinct, periodic lattices [Figs. 2(a)–2(e)]. The observa-
tion of multiple structures for a fixed value of d=w
prompted us to pose the following questions: (i) Are the
lattices that we observe the only ones that are possible?
(ii) What determines which lattice the system produces?

To answer the first question, we enumerated [17] a set of
69 topologically distinct, two-dimensional tessellations of
a stripe. This set contained all five [Figs. 2(a)–2(e)] lattices
that we observe experimentally, but also other lattices that
we did not observe. We optimized the geometry of these
lattices for d=w � 0:2 (which corresponds to our experi-
ment) to yield the minimum of the total perimeter of the
02450
bubble-bubble interfaces. The optimization was subject to
the approximation of the two-dimensional geometry of the
lattice—that is, that the interfaces between bubbles are
vertical [17]. Since the curvature of the gas-liquid inter-
faces in the plane of the cross section of the channel can be
assumed to be constant regardless of the shape of the
bubble in the plane of the device, the calculations provide
a good approximation of the ranking of the interfacial
energies of different structures. This approximation, how-
ever, fails to describe the stability of lattices in which the
length (in the plane of the channel) of at least one of the
bubble-bubble interfaces is comparable to, or smaller than,
the height of the channel. Within this 2D approximation,
for d=w � 0:2; 31 structures satisfied [17] the Plateau
rules, and we ranked these 31 structures according to their
interfacial energies. The experimentally observed lattices
are scattered along the list: the hex-three lattice had the
lowest interfacial energy in the set, the snakeskin ranked
fourth, hybrid ninth, hex-two fifteenth, and hex-one ranked
31st—it had the highest interfacial energy in the set. The
plurality of the lattices that we observe experimentally and
their scatter along the energy scale suggest that—as ex-
3-2
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FIG. 3. Optical micrographs illustrating limit cycle of the
formation of the lattice. The structure of the lattice acts as a
template for the positioning of new bubbles. The process of
placing the bubbles is periodic (here period 6 for the snakeskin
lattice). The dashed outline in (a) marks the portion of the
channel shown in (b)–(j). The time elapsed from the first
image (a) is indicated for each inset. The process starts at t �
0 (a). We marked six bubbles forming a translational unit cell
(the template) with numbers in italic font (a). We also marked
the six consecutive bubbles that enter the channel within one
limit cycle of the process of formation of the lattice in order of
their entry into the channel (from 1 to 6, bold font). After the
limit cycle comes to completion, the structure of the foam in the
channel ( j) is the same as in the beginning of the cycle (a). We
acquired the video using the following parameters: w �
750 �m, h � 25 �m, p � 1:45 kPa, and Q � 0:3 �L=s.
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pected from a nonequilibrium system—the choice of the
suite of lattices observed cannot be explained within an
equilibrium (energetic) framework.

We explored experimentally whether the selection of the
lattices can be altered by changing the total flux of fluids
through the device. We formed the lattices of bubbles of
constant size (d � 150 �m) in an outlet channel of width
w � 750 �m (d=w � 0:2) over a range of pressures p 2
�70 140 kPa�. For each value of p, we recorded 5000
images at 10 ms intervals, and counted the number ni of
frames representing each of the five observed lattices. Fig-
ure 2(f) illustrates the fraction of frames Pi � ni=5000,
corresponding to each structure as a function of the applied
pressure. The switching between different lattices probably
followed a fluctuation in the pressure applied to the device
[16], and was usually followed by a transient period during
which the system produced disordered arrays of bubbles.
These transients were typically short [16] in comparison to
the intervals during which the system produced ordered
lattices, and the overall Pdisordered < 0:1. The ordered struc-
tures typically comprised 102 to 103 bubbles, and could be
made significantly longer by using a system in which the
liquid is fed from a pressurized container [16].

We found that a change of the rate of the flow of the
fluids through the device systematically altered the frac-
tions Pi [Fig. 2(f)] [16]. At low pressures (p � 70 kPa),
we observed primarily the hex-three lattice (Phex-three �
0:93); this lattice has the lowest interfacial energy within
the set of observed (and enumerated) lattices. At inter-
mediate pressures (p � 100 kPa), Phex-three � 0:6 and the
hybrid lattice was frequently observed (Phybrid � 0:3). At
the highest pressure probed in our experiment (p �
140 kPa), the system produced predominantly the hex-
two structure (Phex-two � 0:8), but all the other lattices
were also observed. Typically, at low rates of flow, we
observed structures characterized by lower values of inter-
facial energies, while at higher rates of flow the system
produced lattices corresponding to higher energies more
frequently [16]. We note that the statistics of our measure-
ment is rather poor, and that our analysis is qualitative with
the sole aim of showing that the probabilities Pi change in
a systematic way with a change of the rates of flow of the
fluids through the device.

The dependence of Pi’s on the rates of flow could arise
from the interplay between the rates of relaxation of the
geometry of the lattice and of convection of the bubbles
through the portion of the channel that we monitored in our
experiments. Without any knowledge about the heights of
the energy barriers that separate the minima corresponding
to the structures that we recorded, we can assess the time
scale for a rearrangement along a gradient of interfacial
energy. The value of the Ohnesorge number Oh �
���l��1=2 � 2	 10�2 (for the viscosity of the liquid � �
1 mPa s, its density � � 103 kg=m3, � � 30 mN=m, and a
typical length for the rearrangement l � 100 �m) indi-
cates that the interfacial dynamics is dominated by inertial
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effects, and that we can estimate the typical speed of
rearrangement of the gas-liquid interfaces as ur �
��=�l�1=2 � 1 m=s. The associated time scale is thus tr �
l=ur � 100 �s, a value that compares well with our ex-
perimental observations of rearrangements of the struc-
tures in the channel. We also measured the speed uc at
which the lattices flow in the outlet channel [16], to in-
crease linearly with p from uc � 37 mm=s for p � 63 kPa
to uc � 125 mm=s for p � 140 kPa. We calculated the
times tc that it takes for any bubble to be convected from
the orifice through our observation window (of length lw �
5 mm): tc � lw=uc. These times ranged from tc � 134 ms
for p � 63 kPa to tc � 40 ms for p � 140 kPa and were
thus always 2 to 3 orders of magnitude larger than the time
tr required for relaxation of the shape of the bubbles
provided the system has surmounted the energy barrier.
We conclude that barriers dominate the dynamics of re-
laxation of the structure. This observation is in accord with
the common observations that the relaxation of the struc-
ture of a foam is a complicated and slow process [18]. We
conclude that the fractions Pi faithfully reflect the fractions
of time that the system forms an observed lattice and are
not influenced by the relaxation processes that could
change the lattice after it has been formed.
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Since the lattices are periodic, and their geometry is not
a result of a process of relaxation from an initially disor-
dered state, they must—and are—formed in periodic pro-
cesses of placing new bubbles into the channel. This
process can be viewed as a limit cycle of the dynamic
system that we study. In Fig. 3 we show optical micro-
graphs taken within one period (or cycle) of formation of
the snakeskin lattice. The structure in the channel guides
the positioning of the bubbles emerging from the orifice:
the lattice acts as its own template. There are six bubbles in
the translational unit cell, and every sixth bubble is placed
in an exactly same manner. The limit cycle is stable: small
variations in the size of the bubbles, or in the times at
which they emerge from the orifice, do not move the
system from its periodic trajectory. Although a similar
time sequence could probably be drawn for all the other
[17] plausible structures of the quasi-two-dimensional
foam, since we do not observe them experimentally, there
must be physical mechanisms allowing some cycles and
patterns and excluding the others. We postulate that these
mechanisms determine the dynamic stability of the differ-
ent limit cycles corresponding to the ordered structures of
foam. We do not provide any analysis of this stability here;
we presume that such analysis could be conducted using
simulations that successfully reproduce other aspects of
motion of foams in microchannels [19].

In contrast to living organisms [20,21], synthetic dy-
namic systems rarely exhibit the ability to switch among
members of a significant set of distinct, accessible, ordered
structures. The model system that we presented in this
Letter generates an array of structures, and the selection
of the type of the ‘‘flowing crystals’’ that are generated
depends on the speed at which the self-assembly proceeds.
We believe that the speed of the flow of the fluids alters the
dynamic stability of the limit cycles producing the differ-
ent lattices. Since we observe very little disordered struc-
ture in our experiments, the phase space of the system is
likely divided into five basins of attraction—correspond-
ing to the five observed lattices—and the union of these
basins covers almost the entire phase space. A sufficiently
large perturbation can translate the system from one basin
to another, and cause the system to switch to produce a
different lattice. This property prompted us to propose the
concept of ‘‘dynamic templating’’ that describes formation
of patterns in which the templates reproduce and the
prevalence of one pattern over a different one depends on
the relative stability of the corresponding limit cycles.

We have demonstrated a model system that produces a
set of metastable, periodic lattices in a nonequilibrium
process. The process of formation of these lattices provides
a unique example of coupling between the dynamic stabil-
ity of a limit cycle and an equilibrium property—minimi-
zation of energy—of the resulting structures. In this model
system it is possible to identify the spectrum of energies of
the patterns that are formed in the nonequilibrium pro-
cesses. The system can be switched between these states
02450
with the use of steady-state external control. The self-
guided, but externally controllable, growth of periodic
structures can, we hope, bring a new perspective to the
science of fabrication of regular structures.
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Note added in proof.—We would like to point interested
readers to a recent work by Raven et al. [22] that also
studies the flow of dry foams in microchannels.
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