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An experiment is performed to demonstrate the temporal distinguishability of a four-photon state and a
six-photon state, both from parametric down-conversion. The experiment is based on a multiphoton
interference scheme in a recently discovered projection measurement of a maximally entangled N-photon
state. By measuring the visibility of the interference dip, we can distinguish the various scenarios in the
temporal distribution of the pairs and, thus, quantitatively determine the degree of temporal distinguish-
ability of a multiphoton state.
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It is been well known by now that multiparticle entan-
glement provides more dramatic violations of local realism
by quantum theory [1]. It was shown that the number of
violations increases with the number of particles [2].
Experimental demonstrations of violations of local realism
have thus been shifted from the traditional test of two-
photon Bell’s inequalities [3–5] to the test of generalized
Bell’s inequalities for three or four photons in various
states [6–10]. While entangled two-photon states are pro-
duced naturally from parametric down-conversion, genera-
tion of three- and four-photon entangled states has to rely
on simultaneous two-pair production in parametric down-
conversion. Since pairs are produced randomly in the para-
metric down-conversion process, this raises a question: Are
the two pairs really in an entangled four-photon state or
they are simply independent uncorrelated two pairs?

This question was first attempted by Ou, Rhee, and
Wang [11,12] in an experiment similar to the famous
Hong-Ou-Mandel experiment [13] but with two pairs of
photons. Recently, a number of experiments were per-
formed to further address the problem of photon pair
distinguishability in parametric down-conversion [14–
17]. All the experimental schemes are more or less some
sort of multiphoton interference (either two-photon or
four-photon). More recently, a new scheme was proposed
by Ou [18] that relies on a newly discovered projection
measurement process of a maximally entangled N-photon
state (NOON state) [19–21] to characterize quantitatively
the degree of temporal distinguishability of an N-photon
state. When it applies to photon pairs from parametric
down-conversion, it shows various visibility of multipho-
ton interference for different scenarios in the temporal
distributions of the photons [18].

In this Letter, we wish to report on an experimental
implementation of the NOON-state projection measure-
ment for characterizing the temporal distinguishability of
photon pairs from parametric down-conversion. We find
that the temporal distinguishability depends on the visibil-

ity of multiphoton interference in a NOON-state projec-
tion. When the pairs are indistinguishable from each other,
we obtain the maximum visibility close to 1. But when the
pairs are separated from each other, the visibility drops
from one to some nonzero values depending on the scenar-
ios of pair separation.

The key idea in Ref. [18] for characterizing temporal
distinguishability is the NOON-state projection measure-
ment, as depicted in Fig. 1 for N � 4 and 6. This was
recently proposed and demonstrated by Sun et al. [19,21]
and Resch et al. [20] for a multiphoton de Broglie wave-
length. This measurement projects an arbitrary two-mode
N-photon state of polarization in the form of

 j�Ni �
X

k

ckjN � kiHjkiV; (1)

to a NOON state defined as jNOONi � �jNiHj0iV �
j0iHjNiV�=

���
2
p

. As a result, an N-photon detection proba-
bility is measured that is proportional to

 PN / jhNOONj�Nij
2: (2)

The physics behind this projection measurement is an
ingenious arrangement [22,23] of beam splitters, phase
shifters, and projection polarizers for the cancellation by
destructive interference of the middle terms in the form of
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FIG. 1. A NOON-state projection measurement for (a) four
photons and (b) six photons. Q1, Q2, and Q3 are wave plates that
introduce a relative phase shift of �=2, 2�=3, and 4�=3,
respectively, between H and V. R is a rotator of 45�.
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jN � kiHjkiV , with k � 0, N in Eq. (1). In particular, for
j�4i � j2iHj2iV and j�6i � j3iHj3iV , the projection
probability in Eq. (2) is zero due to orthogonality. These
two states are readily available from type-II parametric
down-conversion (PDC) with a quantum state of

 jPDCi � j0i � �j1iHj1iV �
���
2
p
�2j2iHj2iV

�
���
6
p
�3j3iHj3iV � . . . ; (3)

where j�j2 � 1 is the pair production probability.
However, the expression in Eq. (2) is for a single mode

treatment, which means that the four photons or six pho-
tons must be in a single temporal mode (the so-called 4	 1
or 6	 1 case). So the pairs must be indistinguishable in the
production process. This is normally achieved with an
ultrashort pump pulse for parametric down-conversion so
that the time of the pair production is restricted in the time
duration defined by the pump pulse. But because of the
finite duration of the pump pulse, this is only approxi-
mately the case in practice. So the pairs actually have
partial indistinguishability, and this will be reflected in
the reduced visibility in the multiphoton interference in
the NOON-state projection measurement. As suggested in
Ref. [18], the visibility is then a direct measure for the
degree of indistinguishability.

The experimental arrangement is shown in Fig. 2. A
2-mm long �-barium borate (BBO) crystal cut for type-II
parametric down-conversion is pumped at 390 nm by a
frequency-doubled Ti:sapphire pulse laser. The pump pulse
has a width of 150 fsec and a repetition rate of R0 �
76 MHz. The crystal is so oriented that the two conic
down-converted fields (o and e rays) at the degenerate
frequency converge into two unidirectional beams [24].
The two fields are then coupled to single mode polarization
preserving optical fibers. The outputs of the fibers are
directed to a polarization beam splitter (PBS) to merge
into one beam. One of the fiber outputs is mounted on a
translational stage so that we can adjust the relative delay
c�T between the two polarizations. The recombined
beam, after passing through an interference filter of 3 nm
width, is sent to the corresponding NOON-state projection
measurement assembly for either the four- or the six-
photon case depicted in Fig. 1. All combinations of two-
photon (say, AB, AC, etc.) and four-photon coincidence
(say, ABCD, ACBE, etc.) as well as six-photon coinci-
dence (ABCDEF) in the six-photon case are measured as a

function of the relative delay c�T between the two polar-
izations. Because of the vast amount of coincidence data
and the lack of coincidence units, we measure each coin-
cidence individually.

Four-photon case.—When four-photon coincidence is
measured in the four-photon NOON-state projection
scheme in Fig. 1(a), only the four-photon term in Eq. (3)
makes a significant contribution whereas the six-photon
term is a higher order (it does produce a background that
must be subtracted in data analysis). The four-photon term
is from two-pair production. In parametric down-
conversion, the two photons within a pair are correlated
in time. But for two pairs, there are two extreme cases:
(i) The two pairs are generated in the same time and
become indistinguishable four photons as in Eq. (3), and
we dub it the 4	 1 case; (ii) the two pairs are generated at
two well separated times and are independent of each
other, and we dub it the 2	 2 case. In our experiment,
case (i) is achieved by the instantaneous pumping from
ultrashort pump pulses, while case (ii) is studied from
accidental two-pair coincidences (see below).

For the four-photon scheme in Fig. 1(a), there are six
possible combinations of two-photon coincidence. They
are simply AB, CD, AC, BD, AD, and BC. Among them,
AB and CD show the typical two-photon Hong-Ou-Mandel
dips [13], with AB shown in Fig. 3(a), whereas the rest is
flat (not shown). The visibility of the dip is 89%. The
directly measured four-photon coincidence ABCD data
after background subtraction are shown as solid circles
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FIG. 2 (color online). Sketch of the experimental setup. IF:
interference filter. PBS: polarization beam splitter.
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FIG. 3 (color online). (a) Two-photon coincidences and
(b) four-photon coincidences as a function of relative delay
c�T. The circles in (b) are the directly measured ABCD coin-
cidences, while the diamonds are the four-photon coincidences
from Eq. (4) corresponding to the 2	 2 case. The solid curves
are a Gaussian fit with a visibility of 90% and 33%, respectively.
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(i) in Fig. 3(b) with a Gaussian fit that has a visibility of
90%. The points in diamonds (ii) are the four-photon
coincidences corresponding to the 2	 2 case. Since the
pairs are independent, the four-photon coincidence are
from pairwise accidental coincidence: There are three
possibilities of AB� CD, AC� BD, and AD� BC. So
the four-photon coincidence in the 2	 2 case can be
deduced from the measured two-photon coincidences as
 

R4�ABCD��2	 2� � 
R2�AB�R2�CD� � R2�AC�R2�BD�

� R2�AD�R2�BC��=R0: (4)

The solid curve is a Gaussian with a visibility of 33%. All
the curves have a width of about 200 �m corresponding to
the coherence length from the 3 nm interference filter.

The less than 100% visibility (90%) for the directly
measured four-photon coincidence has two origins. One
is from an imperfect spatial mode match due to misalign-
ment. This has already reduced the two-photon visibility to
89% in Fig. 3(a). The other origin is from nonoverlapping
between the two detected pairs of photons. In other words,
the two pairs are not completely indistinguishable for us to
treat them as in a single temporal mode and to use Eq. (2)
for four-photon coincidence. Reference [19] has a com-
plete account of these two effects and derived the visibility
under these imperfect conditions as

 V 4 �
2v2�A� 3E� � v2

2�A� E�

3�A� E�
: (5)

Here v2 is the two-photon visibility from Fig. 3(a). A is
proportional to the absolute square of the four-photon wave
function, whereas E��A� depends on photon pair ex-
change symmetry. When E �A, this is the situation
when the two pairs of photons are indistinguishable (the
4	 1 case). But when E � 0, the two pairs are completely
separated from each other and become independent (the
2	 2 case) with a four-photon visibility of V 4�2	 2� �
0:33 from Eq. (5). This value is exactly the value from
curve (ii) in Fig. 3(b). The direct observed four-photon dip
in curve (i) in Fig. 3(b) is somewhere in between the two
extreme cases. Substituting the observed values of V 4 �
0:90 and v2 � 0:89 in Eq. (5), we obtain E=A � 0:90.
The quantity E=A thus provides a measure of partial
indistinguishability between the pairs. The nonzero value
of 0.33 for V 4�2	 2� can be thought of as a result of the
indistinguishability between the two photons within each
pair. So the directly measured four-photon dip visibility
V 4 is a measure of indistinguishability for all the four
photons, as suggested in Ref. [18].

E=A can be independently measured from two-photon
coincidence on one (o or e ray) of the two down-converted
fields [11,12]. This is achieved by blocking one of the two
beams that come to the PBS. The directly measured value
is E=A � 0:77 0:06. Another independent method to
measure E=A is from the ratio of the values at infinity
delay (jc�Tj � 1) in the two data sets in Fig. 3(b).

Reference [19] gives the ratio as 1� E=A, and, from
Fig. 3(b), we find E=A � 0:92. This value is more con-
sistent with the one derived from visibility than the value
from two-photon coincidence measurement. We believe
that this is caused by a spatial mode mismatch between
the two pairs of photons [21]. The four-photon coincidence
is more restricted than two-photon coincidence and thus
acts as some sort of spatial mode filtering, resulting in a
better mode match and higher E=A values.

Six-photon case.—With a six-photon coincidence, the
terms with less than six photons in Eq. (3) have no con-
tribution. Since the six photons are from three pairs of
down-converted photons, there are three extreme cases:
(i) The three pairs are generated in the same time and are
indistinguishable in the quantum state of j3iHj3iV (the 6	
1 case); (ii) two of them are indistinguishable but well
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FIG. 4 (color online). (a) Two-photon, (b) four-photon, and
(c) six-photon coincidences as a function of relative delay c�T.
(ai) is for AB, (aii) for AE, and (aiii) for BE in (a). (bi) is for
ABCE, (bii) for ABCD, and (biii) for BCDE in (b). The solid
circles (ci) in (c) are the directly measured ABCDEF coinci-
dence, while the diamonds (ciii) are from two-photon data by
Eqs. (4) and (6) corresponding to the 2	 3 case, and the square
points (cii) are from both two-photon and four-photon data by
Eq. (6) corresponding to the 4	 1� 2 case. The solid curves in
(c) are a Gaussian fit with a visibility of 92%, 59%, and 39%,
respectively. The data in (cii) and (ciii) are multiplied by 2 and 8,
respectively, to bring them to a similar scale as (ci).
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separated from the third pair; they are in the quantum state
of j2iH1j2iV1 � j1iH2j1iV2 (the 4	 1� 2 case); (iii) all
three pairs are well separated from each other and are in
j1iH1j1iV1 � j1iH2j1iV2 � j1iH3j1iV3 (the 2	 3 case). The
three cases give three different results in the six-photon
NOON-state measurement [18].

In the scheme for six photons [Fig. 1(b)], there are
15 different combinations of two-photon or four-photon
coincidence. Among the two-photon coincidences, AB,
CD, and EF are the same and give a typical Hong-Ou-
Mandel dip with 100% visibility in the ideal case; AC, AE,
BD, BF,CE, andDF show a dip of an ideal 50% visibility;
but AD, BC, CF, DE, AF, and BE have a bump of an ideal
50% visibility. Figure 4(a) shows AB, AC, and AD. Among
the four-photon coincidences, ABCE, ABDF, CDBF,
CDAE, EFBD, and EFAC show a dip of 100% visibility
ideally; ABCF, ABDE,CDBE,CDAF, EFBC, andEFAD
have a dip of 1=3 visibility ideally; ABCD, ABEF, and
CDEF have a dip of 5=6 visibility ideally. They are plotted
in Fig. 4(b) after background subtraction. The fitted curves
give dips with visibility smaller than the ideal ones. The
directly measured six-photon coincidence data are pre-
sented in Fig. 4(c) as solid circles (ci). The dip in the fitted
Gaussian curve has a visibility of 0.92, as compared to the
ideal 100%. The diamond points (ciii) and square points
(cii) are six-photon coincidences corresponding to the 2	
3 and the 4	 1� 2 case, respectively. They are deduced
from

 R6 �
X

P

R2�P�R4�P�=R0; (6)

where the index P represents the 15 different combinations
of �AB��CDEF�. For the 4	 1� 2 case (square points),
the quantities R4�CDEF�, etc., are directly measured four-
photon coincidences [shown in Fig. 4(b)], but for the 2	 3
case (diamond points), they are derived from two-photon
coincidences by using a formula similar to Eq. (4). The
diamond points and the square points are fitted to Gaussian
functions with a visibility of V 6�2	 3� � 0:39 and
V 6�4	 1� 2� � 0:59, respectively. The ideal values are
V �0�

6 �2	 3� � 0:4 and V �0�
6 �4	 1� 2� � 0:6 [18].

The observed visibilities in both the 6	 1 and the 4	
1� 2 case are close to the ideal values, indicating that the
pairs are almost indistinguishable. This is reflected in the
large value of the directly measured E=A � 0:91 0:04
from two-photon coincidence, and the E=A value would
be even closer to 1 for six-photon coincidence. Of course,
the observed visibility in 2	 3 case is always the predicted
value because the two photons in each pair are truly indis-
tinguishable and we have a genuine 2	 3 case.

In summary, we used the newly discovered NOON-state
projection measurement technique to quantitatively char-

acterize the temporal distinguishability of a four- or six-
photon state. We find that the visibility of the multiphoton
interference can be used to distinguish different scenarios
in the temporal distribution of the photons.
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