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M.-E. Pol,2 A. Pompoš,76 B. G. Pope,66 A. V. Popov,39 W. L. Prado da Silva,3 H. B. Prosper,50 S. Protopopescu,74 J. Qian,65

A. Quadt,22 B. Quinn,67 K. J. Rani,29 K. Ranjan,28 P. A. Rapidis,51 P. N. Ratoff,43 P. Renkel,80 S. Reucroft,64

M. Rijssenbeek,73 I. Ripp-Baudot,19 F. Rizatdinova,77 S. Robinson,44 R. F. Rodrigues,3 C. Royon,18 P. Rubinov,51

R. Ruchti,56 V. I. Rud,38 G. Sajot,14 A. Sánchez-Hernández,33 M. P. Sanders,62 A. Santoro,3 G. Savage,51 L. Sawyer,61

T. Scanlon,44 D. Schaile,25 R. D. Schamberger,73 Y. Scheglov,40 H. Schellman,54 P. Schieferdecker,25 C. Schmitt,26

C. Schwanenberger,45 A. Schwartzman,69 R. Schwienhorst,66 S. Sengupta,50 H. Severini,76 E. Shabalina,52 M. Shamim,60

V. Shary,18 A. A. Shchukin,39 W. D. Shephard,56 R. K. Shivpuri,28 D. Shpakov,64 V. Siccardi,19 R. A. Sidwell,60 V. Simak,10

V. Sirotenko,51 P. Skubic,76 P. Slattery,72 R. P. Smith,51 G. R. Snow,68 J. Snow,75 S. Snyder,74 S. Söldner-Rembold,45
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We report results of a study of the B0
s oscillation frequency using a large sample of B0

s semileptonic de-
cays corresponding to approximately 1 fb�1 of integrated luminosity collected by the D0 experiment at
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the Fermilab Tevatron Collider in 2002–2006. The amplitude method gives a lower limit on the B0
s

oscillation frequency at 14:8 ps�1 at the 95% C.L. At �ms � 19 ps�1, the amplitude deviates from the
hypothesis A � 0 (1) by 2.5 (1.6) standard deviations, corresponding to a two-sided C.L. of 1% (10%). A
likelihood scan over the oscillation frequency, �ms, gives a most probable value of 19 ps�1 and a range of
17<�ms < 21 ps�1 at the 90% C.L., assuming Gaussian uncertainties. This is the first direct two-sided
bound measured by a single experiment. If �ms lies above 22 ps�1, then the probability that it would
produce a likelihood minimum similar to the one observed in the interval 16–22 ps�1 is �5:0� 0:3�%.

DOI: 10.1103/PhysRevLett.97.021802 PACS numbers: 14.40.Nd, 12.15.Ff, 12.15.Hh, 13.20.He

Measurements of flavor oscillations in the B0
d and B0

s

systems provide important constraints on the Cabibbo-
Kobayashi-Maskawa (CKM) unitarity triangle and the
source of CP violation in the standard model (SM) [1].
The phenomenon of B0

d oscillations is well established [2],
with a precisely measured oscillation frequency �md. In
the SM, this parameter is proportional to the combination
jV�tbVtdj

2 of CKM matrix elements. Since the matrix ele-
ment Vts is larger than Vtd, the expected frequency �ms is
higher. As a result, B0

s oscillations have not been observed
by any previous experiment and the current 95% C.L.
lower limit on �ms is 16:6 ps�1 [2]. A measurement of
�ms would yield the ratio jVts=Vtdj, which has a smaller
uncertainty than jVtdj alone due to the cancellation of
certain theory uncertainties. If the SM is correct, and if
current limits on B0

s oscillations are not included, then
global fits to the unitarity triangle favor �ms �
20:9�4:5

�4:2 ps�1 [3] or �ms � 21:2� 3:2 ps�1 [4].
In this Letter, we present a study of B0

s- �B0
s oscillations

carried out using semileptonic B0
s ! ��D�s X decays [5]

collected by the D0 experiment at Fermilab in p �p colli-
sions at

���
s
p
� 1:96 TeV. In the B0

s- �B0
s system there are two

mass eigenstates, the heavier (lighter) one having massMH
(ML) and decay width �H (�L). Denoting �ms � MH �
ML, ��s � �L � �H, �s � ��L � �H�=2, the time-
dependent probability P that an initial B0

s decays at time
t as B0

s ! ��X�Pnos� or �B0
s ! ��X�Posc� is given by

Pnos=osc � e��st�1� cos�mst�=2, assuming that ��s=�s
is small and neglecting CP violation. Flavor tagging a b
( �b) on the opposite side from the signal meson establishes
the signal meson as a B0

s ( �B0
s) at time t � 0.

The D0 detector is described in detail elsewhere [6].
Charged particles are reconstructed using the central track-
ing system which consists of a silicon microstrip tracker
(SMT) and a central fiber tracker (CFT), both located
within a 2 T superconducting solenoidal magnet.
Electrons are identified by the preshower and liquid-argon
and uranium calorimeter. Muons are identified by the muon
system which consists of a layer of tracking detectors and
scintillation trigger counters in front of 1.8 T iron toroids,
followed by two similar layers after the toroids [7].

No explicit trigger requirement was made, although
most of the sample was collected with single muon trig-
gers. The decay chain B0

s ! ��D�s X, D�s ! ���, �!
K�K� was then reconstructed. The charged tracks were
required to have signals in both the CFT and SMT. Muons
were required to have transverse momentum pT��

��>

2 GeV=c and momentum p����> 3 GeV=c, and to have
measurements in at least two layers of the muon system.
All charged tracks in the event were clustered into jets [8],
and the D�s candidate was reconstructed from three tracks
found in the same jet as the reconstructed muon.
Oppositely charged particles with pT > 0:7 GeV=c were
assigned the kaon mass and were required to have an
invariant mass 1:004<M�K�K��< 1:034 GeV=c2, con-
sistent with that of a�meson. The third track was required
to have pT > 0:5 GeV=c and charge opposite to that of the
muon charge and was assigned the pion mass. The three
tracks were required to form a common D�s vertex using
the algorithm described in Ref. [9]. To reduce combinato-
rial background, the D�s vertex was required to have a
positive displacement in the transverse plane, relative to
the p �p collision point [or primary vertex (PV)], with at
least 4� significance. The cosine of the angle between the
D�s momentum and the direction from the PV to the D�s
vertex was required to be greater than 0.9. The trajectories
of the muon and D�s candidates were required to originate
from a common B0

s vertex, and the ��D�s system was
required to have an invariant mass between 2.6 and
5:4 GeV=c2.

To further improve B0
s signal selection, a likelihood ratio

method [10] was utilized. Using M�K�K��� sideband (B)
and sideband-subtracted signal (S) distributions in the data,
probability density functions (PDFs) were found for a
number of discriminating variables: the helicity angle be-
tween the D�s and K� momenta in the � center-of-mass
frame, the isolation of the ��D�s system, the �2 of the D�s
vertex, the invariant masses M���D�s � and M�K�K��,
and pT�K�K��. The final requirement on the combined
selection likelihood ratio variable, ysel, was chosen to max-
imize the predicted ratio S=

�������������
S� B
p

. The total number of
D�s candidates after these requirements was Ntot �
26 710� 556�stat�, as shown in Fig. 1(a).

The performance of the opposite-side flavor tagger
(OST) [11] is characterized by the efficiency � �
Ntag=Ntot, where Ntag is the number of tagged B0

s mesons;
the purity �s, defined as �s � Ncor=Ntag, where Ncor is the
number ofB0

s mesons with correct flavor identification; and
the dilution, related to purity as D � 2�s � 1. Again, a
likelihood ratio method was used. In the construction of the
flavor discriminating variables x1; . . . ; xn for each event, an
object, either a lepton ‘ (electron or muon) or a recon-
structed secondary vertex (SV), was defined to be on the
opposite side from the B0

s meson if it satisfied
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cos’� ~p‘orSV; ~pB�< 0:8, where ~pB is the reconstructed
three-momentum of the B0

s meson, and ’ is the azimuthal
angle about the beam axis. A lepton jet charge was formed
as Q‘

J �
P
iq
ipiT=

P
ip
i
T , where all charged particles are

summed, including the lepton, inside a cone of �R ���������������������������������
��’�2 � ����2

p
< 0:5 centered on the lepton. The SV

charge was defined as QSV �
P
i�q

ipiL�
0:6=

P
i�p

i
L�

0:6,
where all charged particles associated with the SV are
summed, and piL is the longitudinal momentum of track i
with respect to the direction of the SV momentum. Finally,
event charge is defined as QEV �

P
iq
ipiT=

P
ip
i
T , where

the sum is over all tracks with pT > 0:5 GeV=c outside a
cone of �R> 1:5 centered on the B0

s direction. The PDF of
each discriminating variable was found for b and �b quarks
using a large data sample of B� ! ��� �D0 events where
the initial state is known from the charge of the decay
muon.

For an initial b ( �b) quark, the PDF for a given variable xi
is denoted fbi �xi� [f �b

i �xi�], and the combined tagging vari-
able is defined as dtag � �1� z�=�1� z�, where z �Qn
i�1 �f

�b
i �xi�=f

b
i �xi��. The variable dtag varies between

�1 and 1. An event with dtag > 0�<0� is tagged as a b
( �b) quark.

The OST purity was determined from large samples of
B� ! �� �D0X (nonoscillating) and B0

d ! ��D��X
(slowly oscillating) semileptonic candidates. An average
value of �D2 � 	2:48� 0:21�stat��0:08

�0:06�syst�
% was ob-
tained [11]. The estimated event-by-event dilution as a
function of jdtagj was determined by measuring D in
bins of jdtagj and parametrizing with a third-order poly-
nomial for jdtagj< 0:6. For jdtagj> 0:6, D is fixed to 0.6.

The OST was applied to the B0
s ! ��D�s X data sample,

yielding Ntag � 5601� 102�stat� candidates having an
identified initial state flavor, as shown in Fig. 1(b). The
tagging efficiency was �20:9� 0:7�%.

After flavor tagging, the proper decay time of candidates
is needed; however, the undetected neutrino and other
missing particles in the semileptonic B0

s decay prevent a

precise determination of the meson’s momentum and
Lorentz boost. This represents an important contribution
to the smearing of the proper decay length in semileptonic
decays, in addition to the resolution effects. A correction
factor K was estimated from a Monte Carlo (MC) simula-
tion by finding the distribution of K � pT���D�s �=pT�B�
for a given decay channel in bins ofM���D�s �. The proper
decay length of each B0

s meson is then ct�B0
s� � lMK,

where lM � M�B0
s� � � ~LT � ~pT���D�s ��=�pT���D�s ��2 is

the measured visible proper decay length (VPDL), ~LT is
the vector from the PV to the B0

s decay vertex in the
transverse plane and M�B0

s� � 5:3696 GeV=c2 [1].
All flavor-tagged events with 1:72<M�K�K����<

2:22 GeV=c2 were used in an unbinned fitting procedure.
The likelihood, L, for an event to arise from a specific
source in the sample depends event-by-event on lM, its
uncertainty �lM , the invariant mass of the candidate
M�K�K����, the predicted dilution D�dtag�, and the
selection variable ysel. The PDFs for �lM , M�K�K����,
D�dtag�, and ysel were determined from data. Four sources
were considered: the signal ��D�s �! ����; the accom-
panying peak due to ��D��! ����; a small (less than
1%) reflection due to ��D��! K������, where the
kaon mass is misassigned to one of the pions; and combi-
natorial background. The total fractions of the first two
categories were determined from the mass fit of Fig. 1(b).

The ��D�s signal sample is composed mostly of B0
s

mesons with some contributions from B0
d and B� mesons.

Contributions of b baryons to the sample were estimated to
be small and were neglected. The data were divided into
subsamples with and without oscillation as determined by
the OST. The distribution of the VPDL l for nonoscillated
and oscillated cases was modeled appropriately for each
type of B meson, e.g., for B0

s :
 

pnos=osc
s �l; K; dtag� �

K
c	B0

s

exp
�
�

Kl
c	B0

s

�

� 	1�D�dtag� cos��msKl=c�
=2:

(1)

The world averages [1] of 	B0
d
, 	B� , and �md were used as

inputs to the fit. The lifetime, 	B0
s
, was allowed to float in

the fit. In the amplitude and likelihood scans described
below, 	B0

s
was fixed to this fitted value, which agrees with

expectations.
The total VPDL PDF for the ��D�s signal is then the

sum over all decay channels, including branching frac-
tions, that yield the D�s mass peak. The B0

s ! ��D�s X
signal modes (including D��s , D��s0 , and D0�s1 ; and ��

originating from 	� decay) comprise �85:6� 3:3�% of
our sample, as determined from a MC simulation which
included the PYTHIA generator v6.2 [12] interfaced with the
EVTGEN decay package [13], followed by full GEANT v3.15
[14] modeling of the detector response and event recon-
struction. Other backgrounds considered were decays via
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FIG. 1 (color online). �K�K���� invariant mass distribution
(a) for the untagged B0

s sample, and (b) for candidates that have
been flavor tagged. The left and right peaks correspond to��D�

and ��D�s candidates, respectively. The curve is a result of
fitting a signal plus background model to the data.
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B0
s ! D�

�s�D
�
s X and �B0

d, B� ! DD�s , followed by D�
�s� !

��X, with a real D�s reconstructed in the peak and an
associated real ��. Another background taken into ac-
count occurs when the D�s meson originates from one b
or c quark and the muon arises from another quark. This
background peaks around the PV (peaking backgrounds).
The uncertainty in each channel covers possible trigger
efficiency biases. Translation from the true VPDL, l, to the
measured lM for a given channel, is achieved by a con-
volution of the VPDL detector resolution, ofK factors over
each normalized distribution, and by including the recon-
struction efficiency as a function of VPDL. The lifetime-
dependent efficiency was found for each channel using MC
simulations and, as a cross check, the efficiency was also
determined from the data by fixing 	B0

s
and fitting for the

functional form of the efficiency. The shape of the VPDL
distribution for peaking backgrounds was found from MC
simulation, and the fraction from this source was allowed
to float in the fit.

The VPDL uncertainty was determined from the vertex
fit using track parameters and their uncertainties. To ac-
count for possible mismodeling of these uncertainties,
resolution scale factors were introduced as determined by
examining the pull distribution of the vertex positions of a
sample of J= ! ���� decays. Using these scale fac-
tors, the convolving function for the VPDL resolution was
the sum of two Gaussian functions with widths (fractions)
of 0:998�lM (72%) and 1:775�lM (28%). A cross check was
performed using a MC simulation with tracking errors
tuned according to the procedure described in Ref. [15].
The 7% variation of scale factors found in this cross check
was used to estimate systematic uncertainties due to decay
length resolution.

Several contributions to the combinatorial backgrounds
that have different VPDL distributions were considered.
True prompt background was modeled with a Gaussian
function with a separate scale factor on the width; back-
ground due to fake vertices around the PV was modeled
with another Gaussian function; and long-lived back-
ground was modeled with an exponential function convo-
luted with the resolution, including a component oscil-
lating with a frequency of �md. The unbinned fit of the
total tagged sample was used to determine the various
fractions of signal and backgrounds and the background
VPDL parametrizations.

Figure 2 shows the value of �� logL as a function of
�ms, indicating a favored value of 19 ps�1, while variation
of � logL from the minimum indicates an oscillation
frequency of 17< �ms < 21 ps�1 at the 90% C.L. The
uncertainties are approximately Gaussian inside this inter-
val. The plateau of the likelihood curve shows the region
where we do not have sufficient resolution to measure an
oscillation, and if the true value of �ms > 22 ps�1, our
measured confidence interval does not make any statement
about the frequency. Using 100 parametrized MC samples
with similar statistics, VPDL resolution, overall tagging

performance, and sample composition of the data sample,
it was determined that for a true value of �ms � 19 ps�1,
the probability was 15% for measuring a value in the range
16< �ms < 22 ps�1 with a�� logL lower by at least 1.9
than the corresponding value at �ms � 25 ps�1.

The amplitude method [16] was also used. Equation (1)
was modified to include the oscillation amplitude A as an
additional coefficient on the cos��msKl=c� term. The un-
binned fit was repeated for fixed input values of �ms and
the fitted value of A and its uncertainty�A found for each
step, as shown in Fig. 3. At �ms � 19 ps�1 the measured
data point deviates from the hypothesis A � 0 (A � 1)
by 2.5 (1.6) standard deviations, corresponding to a two-
sided C.L. of 1% (10%), and is in agreement with the
likelihood results. In the presence of a signal, however, it
is more difficult to define a confidence interval using the
amplitude than by examining the �� logL curve. Since,
on average, these two methods give the same results, we
chose to quantify our �ms interval using the likelihood
curve.
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FIG. 2 (color online). Value of�� logL as a function of �ms.
Star symbols do not include systematic uncertainties, and the
shaded band represents the envelope of all logL scan curves due
to different systematic uncertainties.
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ing both statistical and systematic uncertainties.
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Systematic uncertainties were addressed by varying in-
puts, cut requirements, branching ratios, and PDF model-
ing. The branching ratios were varied within known
uncertainties [1] and large variations were taken for those
not yet measured. The K-factor distributions were varied
within uncertainties, using measured (or smoothed) instead
of generated momenta in the MC simulation. The fractions
of peaking and combinatorial backgrounds were varied
within uncertainties. Uncertainties in the reflection contri-
bution were considered. The functional form to determine
the dilution D�dtag� was varied. The lifetime 	B0

s
was fixed

to its world average value, and ��s was allowed to be non-
zero. The scale factors on the signal and background reso-
lutions were varied within uncertainties, and typically gen-
erated the largest systematic uncertainty in the region of
interest. A separate scan of �� logL was taken for each
variation, and the envelope of all such curves is indicated
as the band in Fig. 2. The same systematic uncertainties
were considered for the amplitude method using the pro-
cedure of Ref. [16], and, when added in quadrature with the
statistical uncertainties, represent a small effect, as shown
in Fig. 3. Taking these systematic uncertainties into ac-
count, we obtain from the amplitude method an expected
limit of 14:1 ps�1 and an observed lower limit of �ms >
14:8 ps�1 at the 95% C.L., consistent with the likelihood
scan.

The probability that B0
s- �B0

s oscillations with the true
value of �ms > 22 ps�1 would give a�� logL minimum
in the range 16< �ms < 22 ps�1 with a depth of more
than 1.7 with respect to the �� logL value at �ms �
25 ps�1, corresponding to our observation including sys-
tematic uncertainties, was found to be �5:0� 0:3�%. This
range of �ms was chosen to encompass the world average
lower limit and the edge of our sensitive region. To deter-
mine this probability, an ensemble test using the data
sample was performed by randomly assigning a flavor to
each candidate while retaining all its other information,
effectively simulating a B0

s oscillation with an infinite
frequency. Similar probabilities were found using ensem-
bles of parametrized MC events.

In summary, a study of B0
s- �B0

s oscillations was per-
formed using B0

s ! ��D�s X decays, where D�s ! ���

and �! K�K�, an opposite-side flavor tagging algo-
rithm, and an unbinned likelihood fit. The amplitude
method gives an expected limit of 14:1 ps�1 and an ob-
served lower limit of �ms > 14:8 ps�1 at the 95% C.L. At
�ms � 19 ps�1, the amplitude method yields a result that
deviates from the hypothesis A � 0 (A � 1) by 2.5 (1.6)
standard deviations, corresponding to a two-sided C.L. of
1% (10%). The likelihood curve is well behaved near a
preferred value of 19 ps�1 with a 90% C.L. interval of
17<�ms < 21 ps�1, assuming Gaussian uncertainties.
The lower edge of the confidence level interval is near
the world average 95% C.L. lower limit �ms > 16:6 ps�1

[2]. Ensemble tests indicate that if �ms lies above the

sensitive region, i.e., above approximately 22 ps�1, there
is a �5:0� 0:3�% probability that it would produce a like-
lihood minimum similar to the one observed in the interval
16< �ms < 22 ps�1. This is the first report of a direct
two-sided bound measured by a single experiment on the
B0
s oscillation frequency.
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