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We study the generation of cosmological perturbations during the Hagedorn phase of string gas
cosmology. Using tools of string thermodynamics we provide indications that it may be possible to
obtain a nearly scale-invariant spectrum of cosmological fluctuations on scales which are of cosmological
interest today. In our cosmological scenario, the early Hagedorn phase of string gas cosmology goes over
smoothly into the radiation-dominated phase of standard cosmology, without having a period of
cosmological inflation.
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Introduction.—Since superstring theory contains many
scalar fields, it is not unreasonable to study the possibility
that a period of cosmological inflation might naturally arise
from string theory (see, e.g., [1–3] for recent review ar-
ticles on this approach). Most of the work on trying to
obtain inflation from string theory, however, is done in the
framework of a low energy effective field theory motivated
by string theory, and does not take into account new
symmetries and new degrees of freedom of string theory
which are hard to see at the level of an effective field theory
(see also [4] for the restrictions that string theory can
impose on the range of such a scalar field). In addition,
the scalar field-driven inflationary paradigm, although phe-
nomenologically very successful in terms of predicting an
almost scale-invariant spectrum of adiabatic cosmological
perturbations [5], suffers from several conceptual problems
(see, e.g., [6,7] for discussions of these problems). In
particular, there is an initial cosmological singularity.
Thus, it is of great interest to explore the possibility of
obtaining a new paradigm of early Universe cosmology
which is not based on scalar field-driven inflation but
nevertheless predicts an almost scale-invariant spectrum
of cosmological perturbations.

There is an early approach to string cosmology, now
often called ‘‘string gas cosmology,’’ which is based spe-
cifically on new symmetries (T duality) and new degrees of
freedom (string winding modes) of string theory [8] (see
also [9]). Based on considerations of string thermodynam-
ics, it was argued that string theory could provide a non-
singular cosmology. Going backwards in time, the
Universe contracts and the temperature grows. However,
the temperature will not exceed the Hagedorn temperature.
As radius of space approaches the self-dual radius (the
string length), the pressure of the string gas will go to
zero because of T duality (the positive contribution to the
pressure from momentum modes will cancel against the
negative pressure from string winding modes). Using the
background equations of motion from dilaton gravity, it
follows that the evolution of the scale factor near the self-
dual radius will be quasistatic [10]. Once the radius of
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space decreases below the self-dual radius, the string gas
temperature will decrease, demonstrating that string gas
cosmology will be nonsingular. In addition, a mechanism
was proposed [8] which might explain why, starting with
all spatial dimensions of string scale, only three spatial
dimensions can grow to be macroscopic. There has re-
cently been quite a lot of work on further developing string
gas cosmology (see, e.g., [11–18] for recent reviews and
comprehensive lists of references).

In string gas cosmology, it is assumed that the Universe
starts in a Hagedorn phase, a phase in which the Universe is
quasistatic and in thermal equilibrium at a temperature
close to the Hagedorn temperature [19], the limiting tem-
perature of perturbative string theory. As the Universe
slowly expands, heavy degrees of freedom gradually fall
out of equilibrium. String winding modes keep all but three
spatial dimensions compact [8] (see, however [20,21], for a
critical view of this aspect of the scenario).

In this Letter, we will study the generation of cosmo-
logical fluctuations during the early Hagedorn phase of
string gas cosmology using the tools of string statistical
mechanics. Since this early phase is quasistatic, the Hubble
radius H�1�t� is very large (infinite in the limit of the
exactly static case). The approximation of thermodynamic
equilibrium is justified on scales smaller than the Hubble
radius. We demonstrate that, in this phase, a gas of closed
strings induces a scale-invariant spectrum of scalar metric
fluctuations on all scales smaller than the Hubble radius.
Provided that the expansion of space is sufficiently slow,
these scales will include all scales which are currently
being probed by cosmological observations [22].
Provided that the spectrum in these fluctuations is not
distorted at the time of the transition from the Hagedorn
phase to the usual phase of radiation domination of stan-
dard cosmology (which we argue is unlikely), it follows
that string gas cosmology will lead—without invoking a
period of inflation—to a scale-invariant spectrum of adia-
batic curvature fluctuations.

Outline of the analysis.—Figure 1 presents a space-time
sketch of the history of the Universe according to string gas
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FIG. 1 (color online). Space-time diagram (sketch) showing
the evolution of fixed comoving scales. The vertical axis is time,
the horizontal axis is physical distance. The Hagedorn phase
ends at the time tR and is followed by the radiation-dominated
phase of standard cosmology. The blue curve represents the
Hubble radius H�1 which is cosmological during the quasistatic
Hagedorn phase, shrinks abruptly to a microphysical scale at tR
and then increases linearly in time for t > tR. Fixed comoving
scales (labeled by k1 and k2) which are currently probed in
cosmological observations have wavelengths which are smaller
than the Hubble radius during the Hagedorn phase. They exit the
radius at times ti�k� just prior to tR, and propagate with a
wavelength larger than the Hubble radius until they reenter the
Hubble radius at times tf�k�.
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cosmology. The initial phase t < tR is the Hagedorn phase
during which space is quasistatic, and the temperature is
close to the Hagedorn temperature TH. For times t > tR,
the Universe is assumed to be dominated by radiation as in
standard cosmology. Since space-time is quasistatic during
the Hagedorn phase, the Hubble radius is of cosmological
scale. During the transition from the Hagedorn phase to the
radiation-dominated phase, the Hubble radius shrinks dra-
matically to a microscopic scale given by

 H�1�tR� �
MPl

T2
H

; (1)

where MPl is the four-dimensional Planck mass. In this
Letter, we assume that the radii of the extra spatial dimen-
sions of string theory have already been stabilized. After
tR, the Hubble radius expands linearly in time [23].

In Fig. 1, we also sketch the physical length for various
fluctuation modes k corresponding to fixed comoving wave
number. The key feature is that the fluctuations are inside
the Hubble radius during the Hagedorn phase. They exit
the Hubble radius at times ti�k� which are close to the
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transition time tR. The modes then reenter the Hubble
radius at late times tf�k�.

We want to calculate the amplitude of the metric fluc-
tuations at late times in the phase of standard cosmology. In
order to obtain agreement with current observations of
cosmic microwave (CMB) anisotropies and large-scale
structure, the spectrum of the metric fluctuations needs to
be nearly scale-invariant and nearly adiabatic [24]. To
compute these fluctuations, we will use the theory of linear
cosmological perturbations about a four-dimensional ho-
mogeneous and isotropic cosmology (see [25] for a com-
prehensive review and [26] for a pedagogical introduction).

On scales larger than the Hubble radius, gravity domi-
nates the dynamics and metric fluctuations play the leading
role. We will calculate here the spectrum of scalar metric
fluctuations, fluctuation modes which couple to the matter
sources. In the absence of anisotropic stress, there is only
one physical degree of freedom, namely, the relativistic
generalization of the Newtonian gravitational potential. In
longitudinal gauge, the metric then takes the form

 ds2 � ��1� 2��dt2 � a�t�2�1� 2��dx2; (2)

where t is physical time, x are the comoving spatial coor-
dinates of the three large spatial dimensions, a�t� is the
cosmological scale factor and ��x; t� represents the fluc-
tuation mode.

On scales smaller than the Hubble radius, the gravita-
tional potential � is determined by the matter fluctuations
via the Einstein constraint equation (the relativistic gener-
alization of the Poisson equation of Newtonian gravita-
tional perturbation theory)

 r2� � 4�G��; (3)

where � is the energy density.
Following the early analyses of the generation and evo-

lution of cosmological perturbations in inflationary cos-
mology (see, e.g., [27–29] for analyses in the spirit of what
we do here), we will in the following calculate the power
spectrum of mass fluctuations on sub-Hubble scales during
the Hagedorn phase. We then use (3) to calculate the
magnitude of the metric fluctuations � at the end of the
Hagedorn phase [more specifically, at the time ti�k� when
the scale labeled by k exits the Hubble radius]. As long as
the equations of four space-time dimensional general rela-
tivistic cosmological perturbation theory apply, then � is
conserved on super-Hubble scales as long as the equation
of state of the background does not change significantly
[30].

Assuming the validity of the arguments of the previous
paragraphs, then the spectral index n of the cosmological
perturbations is determined by

 P��k� � k3j��k�j2 � kn�1: (4)

In the above, ��k� is the Fourier coefficient of � and PX
denotes the dimensionless power spectrum of some quan-
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tity X. The value n � 1 corresponds to a scale-invariant
spectrum.

Making use of the constraint Eq. (3), the dimensionless
power spectrum P��k� of metric fluctuations can be ex-
pressed in terms of the mean square mass perturbations
h��M�2i inside a sphere of radius R � k�1:

 P��k� � 16�2G2k�4h��M�2ik6; (5)

where the final factor k�6 comes from converting density
to mass. Thus, in order to establish a scale-invariant spec-
trum, we need to show that the mean square mass fluctua-
tion h��M�2i scales as k�2. In the following subsection we
summarize this calculation. For details the reader is re-
ferred to [31].

Computation of the spectrum.—Now we outline the
calculation of the power spectrum of mass fluctuations.
Starting point is the thermodynamic partition function

 Z��� �
X
i

e��Ei ; (6)

where the summation runs over all states, Ei is the energy
of the state, and � is the inverse temperature. The assump-
tion here is the string coupling is sufficiently small, gs �
1, and the local space-time geometry is close to flat over the
length scale of the finite size box of volume V � Rd. For
that we consider a box of size H�1 which consists of N
blocks of size R. In each block, i, the Universe is homo-
genous and isotropic and filled with strings of energy Ei. In
order to compute the mean square mass fluctuations in a
region of radius R � k�1, we apply string thermodynamics
to a volume of that size. From (6) we obtain

 h��M�2i � hE2i � hEi2 � T2

�
@hEi
@T

�
V
; (7)

where the angular brackets stand for thermodynamic aver-
aging over the whole ensemble of the block universes, hEi
is the ensemble average energy, and the subscript V in-
dicates that the partial derivative is taken at constant vol-
ume. In terms of the specific heat CV � �@hEi=@T�V the
result becomes

 h��M�2i � T2CV: (8)

The specific heat of a gas of closed strings in a back-
ground space given by three large toroidal dimensions and
six small compact dimensions is calculated in [31], using
the methods of [32]. The result, evaluated at temperatures
close to the Hagedorn temperature, is

 CV ’
R2

�03=2T

1

1� T=TH
; (9)

where �0 � l2s , ls being the string length. Note that it was
important to assume that all dimensions are compact in
order to obtain positive specific heat. The mean square
mass fluctuation can now immediately be read off from
(7), and inserting into (5) leads to the final result for the
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spectrum of metric fluctuations:

 P� � 16�2G2�0�3=2 T
1� T=TH

: (10)

From our final result (10) it follows that the spectrum of
metric fluctuations is approximately scale invariant, and
that its amplitude is suppressed by the ratio �lPl=ls�4, where
lPl is the four-dimensional Planck length. In order to obtain
the observed amplitude of fluctuations [24], a hierarchy of
lengths of the order of 103 is required. This is consistent
with our initial assumption that the string coupling con-
stant should be really small since �lPl=ls� � gs � 10�3 �
1. Note that since for fixed value of k, the temperature T
which appears in the spectrum is to be evaluated at the time
ti�k�, a slight tilt of the spectrum towards a red spectrum is
induced.

Discussion and conclusions.—In this Letter, we have
studied the generation and evolution of cosmological fluc-
tuations in a model of string gas cosmology in which an
early quasistatic Hagedorn phase is followed by the
radiation-dominated phase of standard cosmology, without
an intervening period of inflation. Because of the fact that
the Hubble radius during the Hagedorn phase is cosmo-
logical, it is possible to produce fluctuations using causal
physics. Assuming thermal equilibrium on scales smaller
than the Hubble radius, we have used string thermodynam-
ics to study the amplitude of density fluctuations during the
Hagedorn phase. The mean square mass fluctuations are
determined by the specific heat of the string gas. To com-
pute the perturbations on a physical length scale R, we
apply string thermodynamics to a box of size R. Working
under the assumption that all spatial dimensions are com-
pact (but our three spatial dimensions are sufficiently
large), the specific heat turns out to scale as R2. This is
an intrinsically stringy effect: in the case of point particle
thermodynamics, the specific heat would scale as R3. The
R2 scaling of the specific heat leads to a scale-invariant
spectrum of metric fluctuations.

In order to compute the spectrum of metric fluctuations
at late times, we have applied the usual general relativistic
theory of cosmological perturbations. Whereas this is
clearly justified for times t > tR, its use at earlier times is
doubtful. We have used the constraint equation coming
from Einstein gravity to convert the matter fluctuations
into metric perturbations immediately prior to tR, when
scales of cosmological interest today exit the Hubble ra-
dius. We have also assumed that the metric perturbation
variable � does not change on super-Hubble scales during
the transition between the Hagedorn phase and the
radiation-dominated phase of standard cosmology. These
assumptions are well justified in the context of the usual
relativistic perturbation theory. However, the fact that the
Hagedorn phase is described by a dilaton gravity back-
ground and not by a purely general relativistic background
may lead to some modifications. However, since it was
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shown [10] that the usual radiation-dominated phase with
constant dilaton naturally emerges after the Hagedorn
phase, correction terms due to the dynamics of the dilaton
are small but will contribute to the spectral tilt. They are
calculated in [31].

Although our cosmological scenario provides a new
mechanism for generating a scale-invariant spectrum of
cosmological perturbations, it does not solve all of the
problems which inflation solves. In particular, it does not
solve the flatness problem. Without assuming that the three
large spatial dimensions are much larger than the string
scale, we do not obtain a universe which is sufficiently
large today.

Our scenario may well be testable observationally.
Taking into account the fact that the temperature T eval-
uated at the time ti�k� when the scale k exits the Hubble
radius depends slightly on k, the formula (10) leads to a
calculable deviation of the spectrum from exact scale
invariance. Since T	ti�k�
 is decreasing as k increases, a
slightly red spectrum is predicted. Since the equation of
state does not change by orders of magnitude during the
transition between the initial phase and the radiation-
dominated phase as it does in inflationary cosmology, the
spectrum of tensor modes is not expected to be suppressed
compared to that of scalar modes. Hence, a large ratio of
tensor to scalar fluctuations might be a specific prediction
of our model. This issue deserves further attention.
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