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We study the harmonic generation spectrum in a semiconductor superlattice (a quantum-dot array) at
slow relaxation. The effect of a single-mode response in an alternating rectangular (meander) electric field
is demonstrated: For certain values of field parameters, the extremely wide discrete output spectrum with
slowly decaying tails (multiharmonic generation) shrinks to one single harmonic (single-harmonic
generation). Similarly, the effect is manifested in the transient continuous spectrum by diminishing the
divergencies (peaks) at all odd harmonics but one. Substantial control over the spectrum is demonstrated.
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Coherent control of atoms, molecules, and solids [1,2], a
new promising area of research, addresses manipulation of
the electronic properties (electric current, localization, har-
monic generation, etc.) by tuning the parameters of the
applied field. In atomic or molecular systems, high-order
harmonics are generated due to ionization and recollision
processes in a strong laser field, accompanied by formation
of a plateau in the spectrum [3]. Another plateau emerges
within the two-level model of ‘‘doorway’’ states [4]. In
solids, coherent control of electric currents and harmonic
spectra has been demonstrated both in theory and in ex-
periment [5–14]. The phase between the components of the
applied ‘‘colored’’ field can be used to manipulate both the
magnitude and the polarity of the current produced [7–
9,11,13,14]. Induced localization can also be controlled
through the parameters of the applied field [5,6,14]. The
formation of plateaus in high-harmonic spectra of solids
has been demonstrated [6,10,12,13], with the cutoff deter-
mined by the field magnitude. Sparse harmonic generation
spectra have been found in ring molecules or crystals
interacting with a circularly polarized laser field [15] and
in atoms interacting with two-color circularly polarized
laser fields [16]. Of special interest for coherent control
are semiconductor superlattices and quantum-dot arrays
[17] (along with optical lattices [18]), which make possible
the observation of coherence effects in crystalline-type
systems with the use of accessible dc fields and terahertz
ac fields.

In this Letter, we study the harmonic generation spectra
in semiconductor superlattices. We show that the spectrum
of response in a rectangular alternating field has the shape
of a peak with very slowly decaying tails [6], in contrast to
conventional plateaus in smooth fields [3,4,6,10,12,13].
The primary result of the Letter is to demonstrate that,
by tuning the parameters of the applied wide-spectrum
input field, a controllable transition from a wide-spectrum
response (multiharmonic generation) to a single-mode re-
sponse (single-harmonic generation) is possible.

Let us consider a d-dimensional conductor (a semicon-
ductor [17] or optical [18] superlattice, a quantum-dot
array [17]) with a cubic-type lattice within a one-band

approximation. We adopt the tight-binding approach with
possible overlap H�0�0;n between sites n. The system is ex-
posed to an alternating rectangular space-homogeneous
electric field (a meander, series of square pulses with
time period T, basic frequency ! � 2�=T):

 E �t� � E; �T=4< t�mT < T=4;

E�t� � �E; T=4< t�mT < 3T=4;
(1)

where m is any integer. The field (1) is not weak with
respect to the bandwidth, so the treatment is nonlinear and
nonperturbative in its amplitude E.

The problem is solved analytically in the general form
for any time t � mT � �t within the stochastic Liouville
equation or the kinetic Boltzmann relaxation-time ap-
proach [14]. This is an adequate framework for semicon-
ductor superlattices [17] in the nearly coherent regime of
slow relaxation �T � 1, where � is the relaxation rate.
The electron thermalizes with the characteristic time scale
��1; the probability of scattering during the period of the
field T is low. The nonlinear ac response to the field (1) in
the leading order in �T for the entire time range follows
from Eq. (8) of Ref. [14] (periodic case in the absence of dc
field):

 j �mT��t���e�e��mTD̂0��1�e
��mT�K̂0����t�;

(2)
 

���T=4 	 �t 	 T=4� � sin�n"!�t�;

��T=4 	 �t 	 3T=4� � � sin�n"�!�t� ���;
(3)

where j is the electric current, e is the modulus of the
electron charge, " � eEa=@!, and a is the intersite dis-
tance. The operator coefficients D̂0 and K̂0 sum up the
oscillations over wave vectors k and over sites n � niai:
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2
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dk
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Here VBZ is the volume of the Brillouin zone, Ne is the
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electron density, and f�k� is the equilibrium distribution
function. The initial density matrix we assume symmetric,
�k;k�0� � ��k;�k�0�. The term with D̂0 provides the tran-
sient dynamic regime, while K̂0 corresponds to the emerg-
ing kinetic regime [14].

For simplicity, we project the motion on the x direction
(evolution along different axes is uncorrelated) and adopt
the nearest-neighbor approximation jnj � 1.

The harmonic spectrum of the nonstationary current
(2)–(5) consists of (a) a discrete component jd, coming
from the stationary periodic long-time kinetic evolution
and (b) a continuous transient component jc from the
relaxation process.

The discrete spectrum jd incorporates only odd harmon-
ics and in the main term is �-independent:

 j d�mT ��t� � �eK̂0�d��t�; (6)

 �d��t��
4

�
"cos

�
�"
2

�X1
��1

��1���1

�2��1�2�"2 sin��2��1�!�t�:

(7)

The typical shape of it reveals a peak at order close to "
with long spectral tails—the harmonic amplitudes decay
slowly with increasing order 
��2 (Fig. 1). The extended
width of the spectrum of response agrees well with the
intuitive picture: The input field (1) has a wide spectrum

��1. The output spectrum is expected to be wide as well.
The nonlinear frequency-mixing processes contribute to
the widening of it.

However, there exists a special regime, when this wide
output spectrum collapses into one single mode (Fig. 1).
This drastic change happens when " takes any integer odd
value:

 " � 2~�� 1 � odd; (8)

where ~� is some integer. Then the discrete spectrum (6)
instead of (7) retains only one single harmonic:

 �SMR��t� � sin��2~�� 1�!�t�; (9)

all the others being exactly zero within the considered
leading term 
��T�0. In other words, the tuning of the
amplitude or frequency of the input field (1) enables a
controllable transition from a wide-spectrum response (7)
to a single-mode response (SMR) [Eq. (9)]. Somewhat
counterintuitively, the response to a multiharmonic input
field consists then of a single spectral line. This transition
in the spectrum takes place by all the harmonic amplitudes
sinking, except for the single one of order 2~�� 1, the
amplitude of which remains constant (Fig. 1).

The origin of the effect can be observed from the time
evolution (2) and (3). At the discontinuities of the input
field (1), t� � ��1=4� � �m0=2��T, the (continuous) ac re-
sponse (3) typically acquires a cusp—discontinuity of the
acceleration, @j�t� � 0�=@t � �@j�t� � 0�=@t. It is this
cusp (Fig. 2) that gives rise to the wide spectrum (7)—in
contrast to plateaus in smooth fields [3,4,6].

The values (8) for SMR are special in the fact that the
oscillations (3) in the two half-periods not only match but
coincide entirely (Fig. 2). The cusp disappears, and the
oscillations form one single harmonic (9)—one single line
in the discrete spectrum. In fact, under Eq. (8) the electron
velocity for the state k before the discontinuity t� coincides
exactly with the velocity in the state �k after the disconti-
nuity. The contributing states and velocities before and
after t� become exactly similar, provided the initial band
filling �k;k�0� was symmetric in k. Relaxation does not
destroy the effect as the typical interscattering time ex-
ceeds the period of the field.

More insight can be obtained by noting that the fre-
quency of this single harmonic "! is nothing but the
frequency of Bloch oscillations !0 � eEa=@ in the con-
stant fields�E at the upper and lower steps of the meander.
Under condition (8), the half-period of the input field T=2
(the step of the meander) comprises a half-integer number
of Bloch periods, which makes possible their exact match-
ing. Furthermore, the accelerations at the time of the field
discontinuities t� vanish exactly under Eq. (8), becoming

FIG. 1. Discrete ac spectra jd (log plot, arbitrary units) vs
harmonic order �: transition from a wide-spectrum (" � 7:5,
upper dots) [Eqs. (6) and (7)] through " � 7:01, 7.0001,
7.000001 to a single-mode response (" � 7, single dot, same
magnitude) [Eq. (9)]. Continuous curves serve as guidelines
only.

FIG. 2. Current oscillation ��t� [Eq. (3)] (arbitrary units) as a
function of!t within a period T, a function of ". Transition from
cuspless oscillation at " � 1 (SMR, " � odd) through inter-
mediate values with cusps, 1< " 	 2, to vanishing kinetic
spectrum at " � 2 (induced localization, " � even).
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insensitive to the abrupt inversion of the sign of the field
(1). All these ingredients form a single smooth oscillation
without cusps [Eq. (9) and Fig. 2].

Coherent control of the harmonic spectrum through the
SMR effect is obviously different from the traditional
manipulation through the transparency band of the media.
For example, here the frequency of the single generated
harmonic is not fixed by the properties of the media but can
be controlled by the amplitude of the field. The nature of
these two effects is also different—in the present case, it
originates from nonlinearity and coherence.

Another effect takes place if the field parameters satisfy

 " � 2~� � even: (10)

Then, due to the vanishing of the kinetic factor K̂0

[Eq. (5)], the leading terms 
��T�0 of the discrete spec-
trum (6) vanish entirely. Tuning of the amplitude or fre-
quency (1) in the vicinity of the values (10) enables
coherent control of the discrete (or long-time kinetic)
harmonic generation spectrum up to its total collapse.
This collapse happens by uniform vanishing of all har-
monic amplitudes. It originates from the averaging of the
electron velocity in the kinetic regime over the field period
for the account of scattering and provides another mani-
festation of field-induced localization [5,14]. The cusps at
t� under Eq. (10) remain (Fig. 2).

The continuous transient spectrum jc comprises the
decay of the dynamic and the onset of the kinetic regime
in the entire time range:

 j c�t� � �e�D̂0 � K̂0�
Z 1

0
d��c��� sin��!t�; (11)

 �c��� �
2�" cot�����cos���=2� � cos��"=2��

! cos���=2���2 � "2�
: (12)

Here the frequency � is measured in units ! and, thus,
corresponds to harmonic order.

The amplitude �c��� is small in � in contrast to the
discrete spectrum �d (7). However, �c��� is the leading
term in between the integer harmonics (Fig. 3). For "
noninteger, the continuous spectrum (11) exhibits diver-
gencies of two types: (i) linear divergencies (antiresonan-
ces) �c��� 
 �

�1 in the vicinity of even harmonics,
� � 2�� �, �� 1, and (ii) quadratic divergencies (reso-
nances) �c��� 
 ��2 in the vicinity of odd harmonics,
� � 2�� 1� �. At � � " there is no divergence. For
antiresonances 
��1, the harmonic amplitudes change
sign at � � 2�, so that their contributions compensate
each other in part. In contrast to that, the resonances

��2 are stronger and enhance the harmonics � � 2��
1. That correlates qualitatively with the fact that the dis-
crete spectrum jd consists of odd harmonics solely.

The SMR effect (8) changes the continuous spectrum
(11) profoundly. We find then (i) linear divergencies
�c��� 
 ��1 in the vicinity of all integer harmonics,
both even and odd, � � �� �, and (ii) quadratic diver-

gence �c��� 
 ��2 in the vicinity of the only SMR har-
monic (8), � � 2~�� 1� �. The SMR effect decreases
the odd harmonics down to the order of even ones, except
for the single mode � � 2~�� 1. This change is one order
in magnitude—this time one order in the deviation �
instead of one order in the small relaxation rate �, as it
was in the discrete spectrum. All integer harmonics be-
come weak antiresonances, except for the single mode
2~�� 1, which remains a strong resonance and interferes
positively. Thus, the SMR effect is also well pronounced in
the continuous spectrum [Fig. 3 (dotted curves)].

The induced localization (10), despite the profound
effect upon the discrete spectrum (5)–(7), influences the
continuous spectrum (11) and (12) less—due to the inher-
ent presence of the dynamic contribution D̂0. Apart from
the entire vanishing of the kinetic term (5) in Eq. (11), it
modifies the selected harmonic 2~�: (i) The divergence at
2~� disappears. (ii) The divergencies at even harmonics,
other than 2~�, remain linear. (iii) The divergencies at all
odd harmonics remain quadratic.

The appearance of divergencies in the continuous spec-
trum is due to the slow-relaxation limit. Beyond it, the
resonant denominators get renormalized:

 ��� "�2 ! ��� "�2 � ��=!�2; (13)

 sin���� cos���=2� !
sin2���� � ���=!�2

2 sin���=2�
: (14)

The divergencies get smoothed [Fig. 3 (solid curves)] into
big resonances and small antiresonances. The SMR effect

FIG. 3. Continuous harmonic spectra jc (arbitrary units),
scaled by �T, vs harmonic order �: transition from resonances
at � � odd and smaller antiresonances at � � even for " � 3:5
(upper plot, " � odd) to all small antiresonances with the only
nonsmall SMR resonance for " � 3 (lower plot, SMR, " �
odd). The dotted curves are for �! 0, solid curves � � 0:1.
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is highly pronounced through the height of these peaks: In
the general case (non-SMR), the amplitudes of the odd-
order resonances are large as 
��1 as compared to small

� off-resonance values. They decay with the increase of
the SMR order �2~�� 1� and of the deviation j�� ~�j,
retaining the ��1 dependence for all. Under SMR (8),
the height of the only main resonance is similarly large
in the relaxation rate, and it also decreases with SMR order
�SMR 
 ��=!�

�1��1�~��2~�� 1��1. However, this time the
SMR effect washes out all the other resonances � � ~� by
2 orders—down to 
�. The amplitudes of the antireso-
nances (at all even orders) in all the cases are 
�0, i.e., an
order smaller than that of resonances—in correlation with
the odd-harmonics nature of the discrete spectrum. The
SMR effect in the smoothed spectrum is revealed clearly.

Additional insight can be obtained from the time profile
of the spectrum, measured or calculated over the field
period T or at least over an interval shorter than the
relaxation time ��1 (which may be much longer than T)
at some time t � mT � �t. In the leading order, the elec-
tron evolution (2) is quasistationary (periodic) within
!�t� ��T��1. Consequently, the time profile of the
spectrum is discrete and it is provided by Eqs. (2) and
(7). We note readily the time invariance of its shape—it is
independent of m apart from the overall factor in Eq. (2).
The reciprocal magnitudes of different harmonics, mea-
sured both in the dynamic (short-time) and in the kinetic
(long-time) regimes, as well as in the transition process, are
alike. This is a notable fact, as in other aspects these
regimes are very different (cf. Ref. [14]).

The spectrum time profile supports entirely the SMR
effect—under the condition (8) its wide discrete spectrum
(7) collapses into one single harmonic (9) as above. This
similarity originates from the quasistationary time invari-
ance of the evolution within the time scale ��1 compared
to the exact long-time periodicity. Under SMR, the col-
lapse takes place throughout the entire time range, anym in
Eq. (2), or, upon scanning the field parameters, at the
moment Eq. (8) is satisfied.

The existence of the SMR effect both in the discrete
spectrum (6) and (7) and in the time profile of the spectrum
(2) and (7) is understandable, as the transition from cusp-
like evolution to cuspless oscillation takes place within
each period irrespective of the time interval for averaging.
The continuous spectrum (11) and (12), however, is of the
next order in the small parameter �, so the SMR effect
upon it was not guaranteed.

Under induced localization (10), the only surviving
dynamic contribution D̂0 (4) to the spectrum profile decays
with the time scale 
��1, so that at long time �t� 1 in
the main term all harmonic amplitudes vanish.

Discontinuous time-dependent fields as in Eq. (1) are
idealizations of fast-changing fields with smoothed steps.
Smoothing of the discontinuities within a narrow time
interval �t, �t=T � 1 does not destroy the effect but
adds to the SMR harmonic a tail, small with �t=T.

To summarize, we have demonstrated the effect of a
single-mode response in an alternating rectangular (mean-
der) electric field. This wide-spectrum input field enables,
upon tuning of its parameters, a controllable transition
from multiharmonic generation to single-harmonic genera-
tion. The suitable systems are semiconductor superlattices
or quantum-dot arrays. The mechanism is provided by the
nonlinear intraband evolution in the nearly coherent re-
gime. As discussed in Ref. [14], the requirements for the
observation of the effect are feasible. In a separate publi-
cation, based on Ref. [14], we demonstrate that there exists
a range of parameters where domain splitting does not
occur, which could otherwise preclude the observation of
SMR effect in the steady state (cf. Ref. [19]). The SMR
effect provides a clear example and a tool for substantial
coherent control over the ac response or harmonic genera-
tion spectrum. We believe it will be of interest for the
construction of sensors of electromagnetic radiation in
the terahertz range, for the generation, conversion, and
measurement of frequencies and for digital information
processing in optoelectronics.
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