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We have mapped out a detailed phase diagram that shows the ground state structure of a spin-1
condensate with magnetic dipole-dipole interactions. We show that the interplay between the dipolar and
the spin-exchange interactions induces a rich variety of quantum phases that exhibit spontaneous magnetic
ordering in the form of intricate spin textures.
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The recent achievement of a chromium condensate pro-
vides a platform for exploring the effects of magnetic
dipolar interaction in dilute atomic Bose-Einstein conden-
sates (BECs) [1]. On the theoretical side, early studies on
dipolar condensates [2,3] concentrated on the scalar atomic
BECs where the dipole moments are assumed to be polar-
ized by, e.g., external magnetic fields. To unlock the mag-
netic dipole moments, one has to resort to optically
confined spinor condensates [4,5]. A widely used and
very powerful theoretical tool in treating spinor conden-
sates is the single mode approximation (SMA) in which
different spin states are assumed to share the same spatial
wave function [6,7]. An important implication, as well as a
limitation, of the SMA is the lack of spatially varying spin
textures; i.e., the spins are uniformly oriented under the
SMA. The SMA is, however, expected to be valid only
when the total spin-dependent interaction (spin-exchange
and dipolar) is sufficiently weak compared to the spin-
independent interaction [8] and, hence, cannot cover the
whole spectrum of interesting quantum spin phenomena.
The SMA becomes particularly questionable in the pres-
ence of dipolar interactions—from the studies of ferro-
magnetic [9] and ferroelectric [10] materials, it is known
that even a relatively weak dipolar interaction may sponta-
neously induce spatially varying dipole moments, a fact
which can be attributed to the long-range anisotropic na-
ture of the dipolar interaction.

In the present work, we investigate the ground state
wave function and spin structure of a dipolar spinor con-
densate by directly minimizing the mean-field energy func-
tional without the assumption of the SMA. The main result
is summarized in Fig. 1, where a phase diagram in the
parameter space of the relative dipolar strength and the trap
aspect ratio is present. It can be seen that the competition
between the long-range dipolar and the short-range ex-
change interactions gives rise to a rich variety of spin
textures. These spin textures emerge spontaneously in the
ground state, in contrast to the case of nondipolar spinor
condensates, where spin textures can only be induced
dynamically [11–13].

We consider an F � 1 condensate with three magnetic
sublevels mF � 1; 0;�1. In the mean-field treatment, the

grand-canonical energy functional of the system can be ex-
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�F���� is the density of spin,

with F being the angular momentum operator, and R �
r� r0. The collisional interactions include a spin-
independent part c0 � 4�@2�a0 � 2a2�=�3m� and a spin-
exchange part c2 � 4�@2�a2 � a0�=�3m�, with af (f � 0,
2) being the s-wave scattering length for two spin-1 atoms
in the combined symmetric channel of total spin f [5]. For
the two experimentally realized spin-1 condensates 87Rb
[14] and 23Na [15], the spin-exchange interactions are
ferromagnetic (c2 < 0) and antiferromagnetic (c2 > 0),
respectively. The strength of the dipolar interaction is
characterized by cd � �0�2

Bg
2
F=�4��, with �0 being the

vacuum magnetic permeability, �B the Bohr magneton,
and gF the Landé g factor.

The condensate wave function is found by numerically
minimizing the energy functional E���;�
�� subject to the
constraint of fixed total number of atoms N using the
steepest descent method. In our calculation, we fix the
value of c0 to be positive and choose c2=c0 � �0:01 and

FIG. 1. Phase diagram of dipolar spin-1 condensates of
(a) ferromagnetic and (b) antiferromagnetic spin-exchange in-
teraction. s � S=n is the normalized local spin vector.
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0.03 for the case of the ferromagnetic and the antiferro-
magnetic spin-exchange interaction, respectively. These
two ratios correspond to the scattering parameters of
87Rb and 23Na, respectively [16]. To focus on the dipolar
effects, we allow cd to vary and introduce q � cd=jc2j � 0
to measure the relative strength of the dipolar interaction.
The trap aspect ratio � (which is varied between 0.1 and 10
in our calculations) is another control knob that allows us
to tune the shape of the condensate and, hence, the effec-
tive dipolar interaction [3,6]. Finally, in all numerical
results presented in this Letter, we use N � 105 and !0 �
2�� 100 Hz.

Figure 1 summarizes the main result of this Letter in the
form of the phase diagram of the dipolar spin-1 condensate
in the q-� parameter space. For the SMA-I, -II, and -III
phases, the SMA is found to be valid and the spins are
uniformly oriented towards a direction determined by the
dipolar interaction. In the phases labeled by C, S, and P, the
spatial wave functions are spin-dependent and the system
exhibits rich spin textures.

SMA ground states.—The SMA implies that the nor-
malized local spin vector s�S=n is a constant. For a ferro-
magnetic system in the absence of the dipolar interaction,
the vector s has a length of unity and the ground state is
degenerate about the orientation of s due to the SO(3)
symmetry possessed by the order parameter [5]. When
the dipolar interaction is present, the SO(3) symmetry is
broken, and, as shown in Fig. 1(a), the SMA is valid only
when q is below a �-dependent critical value. In the SMA
regions, the direction of s is determined by the trapping
geometry: s is perpendicular to the z axis for a pancake-
shaped (�>1) condensate (SMA-I) and parallel to the z
axis for a cigar-shaped (�<1) condensate (SMA-II), remi-
niscent of a quantum ferromagnet with easy-plane and
easy-axis anisotropy, respectively. This result agrees with
the quantum mechanical calculation under the SMA [6].

As shown in Fig. 1(b), for an antiferromagnetic system,
the SMA is again valid for small q. When q is below a
critical value that is rather insensitive to �, the system
exhibits a vanishing spin with s � 0 (SMA-III). For q
above this critical value and a cigar-shaped trapping po-
tential with � & 0:4, the dipolar interaction may over-
whelm the spin-exchange interaction and make the
condensate effectively ferromagnetic, and the system en-
ters the SMA-II phase with spin oriented along the z axis.
We do not find in this case the SMA-I phase with s ? z. It
is also worth mentioning that transitions between different
SMA phases are all first order.

Figure 1 shows that the critical dipolar strength at which
the SMA becomes invalid decreases as �. For a ferromag-
netic system, qcr � 0:1 at � � 10, which can be reached in
87Rb [6]. The dipolar effects thus become more prominent
as the condensate becomes more two-dimensional (2D)
pancakelike. This is consistent with the study in solid
magnetic materials, where the dipolar interaction, nor-
mally weak enough to be ignored in bulk materials, plays
an essential role in stabilizing long-range magnetic order in

2D systems, e.g., in magnetic thin films [17]. Our work
shows that it is feasible to observe a non-SMA ground state
in a pancake 87Rb condensate.

Non-SMA ground states.—The SMA regime is analo-
gous to the single-domain regime in micromagnetics,
where the exchange energy dominates over all other
spin-dependent energy terms and a uniform magnetization
forms as a result [9]. As q increases, the SMA eventually
breaks down. At large q, the dipolar interaction will domi-
nate the spin-dependent interaction, and the difference
between the ferromagnetic and antiferromagnetic spin-
exchange interaction becomes insignificant, as can be
seen from Fig. 1. The non-SMA region is further divided
into three distinct phases P, C, and S, which stand for
pancake, cigar, and spherical, respectively (see below).

Figure 2 shows a typical wave function in the P phase
which occurs in pancake geometry. The density profiles of
all spin components are axially symmetric with n1�r� �
n�1�r� and hence sz � 0; i.e., the spins are planar and lie in
the xy plane. The phases �� take the form

 �� � w�’� ’�; (1)

where ’ is the azimuthal angle, ’� is a constant phase that
satisfies

 ’1 � ’�1 � 2’0 � 0; (2)

and w� is the phase winding number with the values

FIG. 2 (color online). Ground state of the P phase for ferro-
magnetic coupling with � � 2 and q � 1. (a) Density of each
spin component along the x axis. The total density is denoted by
the dashed line. (b) and (c) are the respective phase images for
�1 and ��1 in the z � 0 plane. The phase of �0 is a constant
and is not shown here. The phases in the z � 0 plane are similar.
(d) The vector plot of S in the xy plane with the color map
corresponding to the total density. Here, as well as in Figs. 3 and
4, we adopt aho � �@=m!0�

1=2 and N=a3
ho as the units for length

and density, respectively.
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 hw1; w0; w�1i � h�1; 0; 1i:

Therefore, the two spin components �1 and ��1 are in
vortex states with opposite winding numbers. Because of
the presence of the nonrotating �0 component, the total
density does not vanish at the vortex core. Such a ground
state represents a coreless Skyrmion. It is easy to show that
the spin vector can be expressed as

 S � 2
�������������
2n0n1

p
�sin’;� cos’; 0�:

As illustrated in Fig. 2(d), the spin continuously curls
around the z axis to form a vortex such that the system
possesses a persistent spin current but no net density
current. The spin vortex state is analogous to the flux-
closure magnetic states in micromagnetics [9]. In the vi-
cinity of the z axis, to reduce the exchange energy, the
magnitude of the spin gradually decreases and vanishes on
the z axis. This differs from the magnetic vortex observed
in nanoscale ferromagnets [18], where, due to the conser-
vation of local spin moment, the magnetization in the
vortex core turns toward the z axis [9].

In the C phase which occurs in a cigar-shaped trap, n�
remains cylindrically symmetric and �� can also be ex-
pressed in the form of Eq. (1) where the phases ’� are now
z-dependent but still satisfy Eq. (2), and the winding
numbers are now given by

 hw1; w0; w�1i � h0; 1; 2i:

The spin vector in the C phase takes the form

 S � �� sin�’� ��;�� cos�’� ��; n1 � n�1�;

where � �
��������
2n0

p
�
�����
n1
p
�

��������
n�1
p

�, and ��z� � ’0�z� �
’1�z� is the spin twisting angle which is a monotonically
increasing function of z with ��z � 0� � 0. A typical spin
texture plot in the C phase is shown in Fig. 3(a), where one
can see that the spins twist around the z axis, tracing out a
helical pattern. The total twisting angle ��1� � ���1�
increases with q and approaches � at large q. The corre-
sponding structures of the planar spin Sk � �Sx; Sz� are
plotted in Figs. 3(b) and 3(c), which resemble the magne-
tization of a bar magnet.

In between the P and C phases is the S phase which
occurs when the trapping potential is close to spherical
(�  1). A distinct feature of the S phase is that n�
becomes nonaxisymmetric, signalling the broken cylindri-
cal symmetry of the spatial wave functions. To further
quantify the spin texture, we define the spin toroidal mo-
ment vector as [10]

 G �
Z
dr�r� S�r��:

For all the SMA phases, we have G � 0. For both the P and
C phases, G points along the z axis. The S phase, by
contrast, features finite Gx and Gy. The toroidal moments
as functions of q are plotted in Figs. 4(d)–4(f) for three
different values of �. For small q, G � 0 and the system is

in the SMA regime. As q exceeds a threshold, G � 0 and
the S phase is reached. The continuity of G suggests, in this
mean-field calculation, the transitions between SMA and
non-SMA, and also among non-SMA, phases are of second
order. In Fig. 4(d), we also see that, for q > 0:6, the system
enters the P phase. Figures 4(a)– 4(c) show examples of the
spin structure in the S phase. For this particular set of
parameters, the condensate displays two domains: One
has Sz > 0 and the other Sz < 0.

Collapse.—Condensate collapse will occur when the
dipolar interaction strength exceeds a critical value c
d.
For both ferromagnetic and antiferromagnetic coupling,
we have found that c
d  0:24c0 and is nearly independent
of the trap aspect ration �. This critical value agrees with
that of a highly elongated dipolar scalar condensate with
dipole moments polarized along the axial direction [2]. As
is well known, the critical dipolar strength for a scalar
condensate is very sensitive to � [2]. In the spinor system
studied here, the dipoles are free to rearrange themselves to
minimize the dipolar interaction, which renders the insen-
sitivity of c
d with respect to the trapping geometry.

Dipole induced spin-orbital coupling.—In the SMA
regime, the total orbital angular momentum L vanishes,
and the ground state wave functions �� can be taken to be
real. In the non-SMA regime, the spin and orbital degrees
of freedom are intimately coupled and �� must be de-
scribed by complex functions. Here the spin (S2) and
orbital (L2) angular momenta are not separately con-
served; only the total angular momentum �S�L�2 is
conserved. It is not difficult to show that, in the non-
SMA regime, if the set of wave functions f��g minimizes
the energy functional, then the set f�
�g does not. On
the other hand, if we make the transformation
��1; �0; ��1� ! ��



�1;��



0; �



1�, then the new set still

FIG. 3 (color online). (a) The streamline plot of the spins for
ferromagnetic coupling in the C phase with � � 0:4 and q �
1:6. The color map represents jS?j on these cross sections.
(b) The vector plot of sk in the xz plane. Same parameters as
in (a). (c) The same as (b) except for q � 6.
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minimizes the energy. The above transformation amounts
to inverting S and L simultaneously and hence preserving
the relative orientation between them. This interconnection
between S and L is well known in superfluid 3He and the
related phenomenon has been termed the spontaneously
broken spin-orbit symmetry [19,20].

The dipole induced spin-orbital coupling was recently
explored theoretically in the dynamics of 52Cr condensate
and is predicted to manifest in the Einstein-de Haas effect
[21]. The 52Cr atom features a spin-3 ground state [22]
whose short-range collisional interaction is characterized
by four scattering lengths, and not all of them are accu-
rately known. Although we have studied, in this work, a
relatively simpler spin-1 system, we expect that much of
the essential physics can be applied to higher spin systems.

In conclusion, we have provided a detailed phase dia-
gram which shows the ground state structure of a dipolar
spin-1 condensate beyond the SMA. In this system, the
spin and orbital degrees of freedom are intimately coupled
together. The interplay between the long-range dipolar and
the short-range exchange interactions gives rise to a variety
of quantum phases characterized by distinctive spin tex-
tures. As such, dipolar spinor condensates represent an
intriguing quantum magnetic system whose properties
are highly tunable. The work here assumes zero magnetic

field, an assumption valid for 87Rb and 52Cr when the
external magnetic field strength is less than 0:1 mG [6].
This constraint poses an experimental challenge but is
definitely within the reach with current technology.
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FIG. 4 (color online). The spin structure in the S phase for
antiferromagnetic coupling. (a) Spin projection in the z � 2:29
plane. � � 0:4 and q � 1. (b) Spin projection in the y � 0 plane.
� � 0:8 and q � 1. (c) The spin structure for � � 0:8 and q �
1. (d)–(f) The dipolar strength dependence of the toroidal mo-
ments for � � 1:2, 0.8, and 0.4, respectively.
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