
Switching Mechanics with Chemistry: A Model for the Bending Stiffness of Amphiphilic Bilayers
with Interacting Headgroups in Crystalline Order

Markus A. Hartmann,1 Richard Weinkamer,1 Thomas Zemb,2 Franz Dieter Fischer,3 and Peter Fratzl1,*
1Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany

2LIONS at DRECAM/SCM, C.E.A. Saclay, F-91191 Gif sur Yvette, France
3Institute of Mechanics, Montanuniversität Leoben, Franz-Josef Straße 18, A-8700 Leoben, Austria

(Received 21 November 2005; published 7 July 2006)

Bilayer structures in catanionic systems experimentally showed peculiar mechanical behavior. The
observed increase in the bending stiffness is supposedly connected to additional hydrogen bonds forming
between anionic headgroups. With a simple model, we can explain the extreme sensitivity of the bending
stiffness of the membrane on the molar ratio of the charged molecules. This effect is further amplified by
the sandwichlike structure of the membrane, where the apolar core separating the headgroups acts via a
kind of lever-arm principle. As a consequence of these combined effects, the model membrane changes
from a soft behavior with bending rigidities on the order of 10kBT to an extremely stiff membrane with a
bending stiffness more than 2 orders of magnitude larger where most of this change occurs within a molar
ratio interval smaller than 0.1.
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Amphiphilic molecules are well known for their ability
to self-assemble into ‘‘films’’ with defined area, stiffness,
and curvature [1]. These films assemble into complex geo-
metrical structures, such as micelles, vesicles, ‘‘sponge’’ or
lamellar phases when dissolved in water [2]. The chemical
potential of any surfactant assembly can be expressed as a
function of the integrated average curvature, the so-called
packing parameter, and the area per headgroup. When a
configuration of zero average curvature is stablest, amphi-
philes form bilayer structures stacked in smectic order—
usually in multilayered vesicles [3,4]. For a membrane
composed of a mixture of two amphiphiles with oppositely
charged headgroups [5], the lateral cohesion energy of the
bilayer is much stronger than of all other known types of
bilayers. This so-called ‘‘catanionic’’ system [6] off stoi-
chiometry and in the absence of excess salt, i.e., ‘‘true
catanionics,’’ shows very peculiar behavior, such as frag-
mentation of lamellae upon dilution into micron-sized
rigid nanodisks [7]. Measurements of the mechanical prop-
erties of these nanodisks yielded bending rigidities of the
order of hundreds to thousands kBT, i.e., at least 2 orders of
magnitude larger than electrically charged bilayers [8].
Another special feature of true catanionics is the extreme
sensitivity of the phase diagram with respect to the molar
ratio between anionic and cationic surfactants. While at
equimolar ratio, only concentrated liquid crystals are
formed, close to molar ratios 1=3 or 2=3, large domains
of colloidal stability can be observed, e.g., cylindrical
micelles, punctuated planes, and polyhedra, respectively
[9,10]. These systems show the highest bending stiffness
yet reported for a self-assembled system based upon sur-
factants, indicated by giant colloids which are molecularly
flat over a length of 10 micrometers and more and, there-
fore, are observable directly under the optical microscope.
Except for the case of catanionics, direct measurements of

the mechanical properties of bilayers are scarce. This is
because, first, due to line defects, P�0-type phases are a
very brittle material. Second, most phases in the L� state or
with tilted chains are metastable only. Critically compiled
data can be found in Chap. 5 of Ref. [11]. The most reliable
experiment on a single frozen membrane composed of
zwitterionic lipids has been published recently [12].
These peculiar experimental observations motivate our
modeling and exploration of the mechanical properties of
bilayers made of amphiphilic molecules with oppositely
charged headgroups occupying a triangular lattice. The
important lateral interactions to be modeled are of electro-
static origin and, additionally, a probably dominant hydro-
gen bond frequently observed between parallel car-
boxylates [13]. The formation of these additional bonds
between anionic headgroups is modeled by a spring net-
work. Our model therefore displays some resemblance to
models of the membrane-associated cytoskeleton of living
cells, e.g., of erythrocytes [14].

On a mesoscopic scale, our model membrane as
sketched in Fig. 1 consists of an apolar core with a width
h and an upper and lower charged layer formed by the

h κ0

Y

Y

FIG. 1 (color online). A cut through a lipid bilayer membrane.
The two differently charged headgroups are shown as dark
(anionic) and light circles (cationic), respectively. The black
bars connecting two neighboring anionic molecules indicate
the formation of additional bonds (e.g., hydrogen bonds).
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headgroups of the molecules. The mechanical behavior of
the membrane is described by the bending stiffness of the
apolar core �0, and the in-plane stiffness of the charged
layers represented by their in-plane tension modulus Y, i.e.,
the two-dimensional analog of the modulus of elasticity E
(Y is therefore measured in units of force/length). Because
of the sandwich structure, the bending stiffness � of the
whole membrane is given by [15]

 � � �0 �
h2

2
Y: (1)

Different from the reported h2 dependence of �0 [11], the
same dependence for the second term is simply the result
of the sandwich structure. With our model, we want to
understand the effect of additional bonds between the
headgroups on Y and, consequently, on the mechanical
behavior of the whole membrane, when the electrostatic
contribution is much smaller. The experimental scenario
we model is a fluid membrane where the oppositely
charged headgroups arrange themselves according to the
thermodynamic equilibrium at temperature T. Because of a
change in the solvent conditions, the configuration of
molecular heads ’’freezes’’ and additional bonds between
the headgroups develop. In the microscopic part of the
model, the closely packed molecules with either positively
or negatively charged headgroups occupy a triangular lat-
tice with lattice spacing a. The electrostatic interactions
between the charged heads are described by nearest neigh-
bor interactions only using a standard Ising model [16].
The sign of the exchange energy J is chosen to ensure an
antiferroelectric ordering between the charged heads [17].
An equilibrium configuration of the positively and nega-
tively charged heads is obtained using standard
Monte Carlo techniques [18]. This equilibrium configura-
tion is then fixed, and nearest neighbors are assumed to be
connected by linear elastic springs. Two nearest neighbor
molecules with negative charge are assigned a spring con-
stant k1; all other headgroup pairs are connected by springs
with k2 � k1.

The mechanical properties of the layers can be described
by a stiffness matrix relating the in-plane normal tensions
�1 and �2 and the in-plane shear tension � (all measured in
units of force/length) to the in-plane strains �1 and �2 and
the in-plane shear angle �.
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The six independent entries of the stiffness matrix were
determined by performing three independent computa-
tional mechanical tests by imposing different deformations
on the system and taking care of appropriate boundary
conditions. Using a Monte Carlo algorithm, the position
of the molecules in elastic equilibrium was determined.
Then the elastic coefficients were calculated, yielding

 Q11 �Q22 � Q13 � Q23 � Q11 �Q12 � 2Q33 � 0;

(3)

for all molar ratios. Thus, the layers show isotropic elastic
behavior, and, therefore, the number of independent elastic
parameters can be reduced to two only, the tension modu-
lus Y and the two-dimensional Poisson ratio �,

 Y � Q11�1� �2�; � �
Q12

Q11
: (4)

The connection to the widely used area compression modu-
lus KA [11] reads as

 KA �
Q11�1� ��

2
�

Y
2�1� ��

: (5)

For the numerical simulations, we chose for the geome-
try of the membrane a thickness of the apolar core h �
3 nm [7]. For the bending stiffness of the apolar core,
values ranging from 3 to 50kBT have been reported [11];
our choice was �0 � 10kBT. The electrostatic contribution
to �0 has been shown to lie in the range of some kBT
[19,20]. As will be shown, this contribution is negligible to
the increase in bending stiffness induced by the additional
bonds between anionic headgroups. To study the influence
of the ordering due to the electrostatic interaction between
the headgroups, simulations were performed with two
different values for the Ising exchange energy J, J �
1kBT and J � 0, the latter corresponding to a random
arrangement of the molecules. The binding energy of the
additional hydrogen bonds is about 2kBT [21]. To trans-
form this energy into a value for the spring constant k1, we
consider a Lennard-Jones potential with an equal binding
energy and an equilibrium spacing a � 0:8 nm. A Taylor
expansion gives for the harmonic term

 k1 �
72W

a2 � 180kBT=nm2 � 4:5 eV=nm2: (6)

The spring constant between the other headgroup pairs
should be orders of magnitude smaller so that the contri-
bution of the apolar core �0 dominates in the case without
additional bonds. We set � � k1=k2 � 104.

Membranes with a different composition of anionic and
cationic molecules have been studied covering the whole
molar ratio range from pure cationic (cA � 0) to pure
anionic layers (cA � 1). The choice J � 1kBT resulted in
the tendency that anionic molecules try to be surrounded
by cationic ones and vice versa. For sufficiently large
molar ratios, a continuous network of additional bonds
emerges with holes due to the presence of dispersed cati-
onic molecules [Fig. 2(a)]. For molar ratios cA close to 2=3,
a regular superlattice is formed [Fig. 2(b)]. The honeycomb
structure is due to a cationic molecule surrounded by six
anionic molecules. For small molar ratios, the network of
additional bond breaks into separated islands of additional
bonds [Fig. 2(c)].
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Figure 3 summarizes our results concerning the mechan-
ics of the model membrane as a function of its composi-
tion. Plotted are the tension modulus Y, the two-
dimensional Poisson ratio �, and the bending stiffness �,
together with the effective elastic modulus �E, defined as
�E � �12�1� �2�=h3	�, with � � 1=3. The two different

curves allow a comparison between the case where the
electrostatic interaction between the charged headgroups
results in an ordering of the molecules and the case of a
random arrangement of the molecules. For both Y and �,
the general behavior is characterized by a transition over
several orders of magnitude from low to high values, when
the molar ratio is increased. Significant differences be-
tween the ordered and the random cases occur only in
the range between cA � 0:6 and cA � 0:8 where the tran-
sition substantially takes place. The effect of the order
consists in postponing the transition to higher molar ratios
and therefore steepening the switching from soft to stiff. In
this range cA � 0:6–0:8, the two-dimensional Poisson ratio
� takes values close to 1 in the case of ordering, while it is
roughly 1=3 for all molar ratios in the random case, which
is the exact value for an isotropic two-dimensional solid, if
the Cauchy relation is valid [22]. The calculated values of
� lie in the range of 10–1000kBT, while the effects on �0

[see Eq. (1)] due to electrostatic interactions such as de-
formation of the counterion cloud may add some rigidity in
the range 1–10kBT [19,20,23]. Thus, these effects are at
least 1 order of magnitude smaller than the chemical
effects considered in this Letter, leading to unexpected
high in-plane persistence lengths [8,24].

In some limiting cases, analytical results can be ob-
tained, which are in full agreement with the computational
results. For a pure anionic configuration (cA � 1), the only
springs present are that of type k1 and the triangular lattice
is mechanically described by Y � 2=

���
3
p
k1 and � � 1=3.

Hence, the additional bonds increase the bending modulus
by �� � h2k1=3, resulting in a maximum stiffness of the
membrane of � 910kBT. For a completely ordered lattice,
which can be formed for cA � 2=3, the stiff bonds form a
honeycomb lattice [see Fig. 2(b)] and � is given by 2��2 �

�� 1�=�2�2 � 11�� 5�, � � k1=k2. In the limit �! 1,
then �! 1 and, therefore, with Eq. (4), Y ! 0, reflecting
that a honeycomb lattice is a kinematically undetermined
structure that can be stretched or sheared without stretch-
ing any bond. To understand the transition between soft
and stiff, the percolation properties of the network of addi-
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FIG. 3 (color online). Tension modulus Y (top), two-
dimensional Poisson ratio � (middle) of the headgroup region,
and the bending stiffness �, as well as the (effective) elastic
modulus �E (bottom) of the complete sandwich structure plotted
as a function of composition. The behavior for two different
temperatures is shown (J=kBT � 1 and � 0, respectively). The
lines drawn are guides to the eyes. Note the semilogarithmic
scale in the plots at the top and bottom.

(a) (b) (c)

FIG. 2. Three typical configurations for different molar ratios and a temperature of J=kBT � 1 are plotted for (a) cA � 0:9,
(b) cA � 0:67, and (c) cA � 0:5, respectively. The additional bonds between anionic molecules are marked by small bars.
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tional bonds are crucial. The site percolation threshold for
a triangular lattice is given by cA � 0:5 [25]. Since the
conductivity backbone contains quasi-one-dimensional
structures which do not resist deformation [26], the for-
mation of a rigid backbone is essential for the stiffening
[27]. The rigidity percolation on the (random) triangular
lattice was found to occur around a bond probability pce �
0:65 [28]. This corresponds to a rigidity percolation at a
site concentration cA � 0:81, but for our case this value is
too high, since a random arrangement of atoms is not
equivalent to a random arrangement of bonds. In the case
of an electrostatic ordering between the molecules, the
onset of the rigidity percolation is postponed to high values
of cA. First, the ordering opposes the formation of addi-
tional bonds. Second, in the honeycomb framework of the
additional bonds, each honeycomb cell is kinematically
undetermined. Beyond a concentration of cA � 2=3 in
the case of full order, each additional anionic atom placed
in the center of a honeycomb cell causes the formation of
six additional bonds and the cell becomes stiff. The stiffen-
ing effect of the charged layer is reflected in the behavior of
the bending stiffness � only when the stiffening of the
surface bonds markedly exceeds �0, which happens be-
yond cA � 0:65 (Fig. 3). The energies of the additional
microscopic bonds are rather low; however, the stiffening
effect is tremendously enhanced as a result of the sand-
wichlike structure of the membrane [Eq. (1)].

Although the specificities of the experiments are not
captured in our model, two main experimental obser-
vations make us confident that the mechanism, which
allows the model membrane to change the mechanical
properties in a very narrow concentration range, is also
acting in real catanionic systems. First are the high bend-
ing rigidities observed in nanodisks and in polyeders,
where 500kBT has been found as a lower bound [8].
Second, the high sensitivity of the system to small changes
in the molar ratio between cations and anions in certain
concentration ranges. This sensitivity could also be the
reason for the intriguing coexistence of facetted and un-
facetted bent spheres which can be observed in freeze
fracture microscopy. This has been up to now considered
as an artifact or due to the presence of impurities. In the
case when the molar ratio is around the stiffening tran-
sition, local fluctuations in the composition, which can be
as large as 10% [29], can be responsible for finding col-
loids with mechanical stiffness varying 1 order of magni-
tude in the same sample, unfacetted soft and facetted stiff
colloids.

We acknowledge support from the French-German net-
work ‘‘Complex fluids in thin films.’’
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