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Lee-Yang Zeros of Periodic and Quasiperiodic Anisotropic XY Chains in a Transverse Field
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The partition function zeros of the anisotropic XY chain in a complex transverse field are studied
analytically and numerically. It is found that the partition function zeros of the periodic and quasiperiodic
quantum Ising chain lie on the circle at zero temperature and the radius equal to the values of the critical
field. For the periodic and quasiperiodic anisotropic XY chains, the closed curves are split to two or three
closed curves as the anisotropic parameter y decreases at a given ratio of two kinds of exchange
interactions. For the isotropic XX case, the partition function zeros lie on the straight segments which are
parallel to the real axis and the segments move towards the real axis as the temperature goes to zero.
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In 1952, Yang and Lee [1] proposed the famous method
to analyze the equilibrium phase transition by studying the
partition function zeros (PFZs) in the complex fugacity
plane in the thermodynamical limit. Lee and Yang [2]
proved the circle theorem, which states that the PFZs of
an Ising ferromagnet lie on a unit circle in the complex
fugacity plane. Afterward, the method of PFZs has been
extensively applied to the Potts model [3,4], the 1D Blume-
Capel model [5], continue systems [6], the ferromagnetic
Ising model on the quasiperiodic systems [7] and the
Sierpinski gasket [8], the antiferromagnetic Ising model
[9], first-order phase transition [10], nonequilibrium phase
transitions [11,12], self-organized criticality [13], and the
Urn model [14]. The thermodynamical phase transitions of
quantum systems, for example, the Heisenberg spin chain
[15], the Hubbard model [16], and an ideal Bose gas in an
external magnetic field [17], etc., are studied by the same
method.

Recently, there has been a great deal of interest in study-
ing the quantum phase transitions (QPTs) [18]. Different
from the thermodynamical phase transition, the QPTs are
associated with the changes of the ground state. Therefore,
how to extend the method of PFZs to study the QPT is an
interesting problem. Zou and Wang [19] studied the PFZs
of the uniform quantum Ising and anisotropic XY chains in
a transverse field and found that the zeros lie on the circles
and ellipses in the complex field plane. The zero at the
positive real axis corresponds to the QPT point of the
system at zero temperature. However, to our knowledge,
a detailed study of QPTs by using the method of PFZs is
still lacking.

On the other hand, experimental work on quasicrystals
[20] and quasiperiodic superlattices [21] has inspired theo-
retical interest in quasiperiodic systems. Recently, the
QPTs of quasiperiodic spin chains were studied exten-
sively using transfer matrix, renormalization-group, and
numerical methods [22,23]. It is found that there is only
one QPT point in quasiperiodic and random quantum Ising
chains in a transverse field. Their critical behavior can be
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classified by invoking a relative criterion suggested by
Luck [23]. We studied the QPTs of periodic and quasiperi-
odic anisotropic XY chains in a transverse field and found
that there is more than one QPT point on some parameter
regions for periodic and quasiperiodic chains, and the
number of phase transition points is dependent on the
parameters and the structure of systems, which is quite
different from those of the quantum Ising chain in a trans-
verse field and the anisotropic XY chain without transverse
field [24]. In this Letter, we study the distributions of the
PFZs of periodic and quasiperiodic anisotropic XY chains
in a complex transverse field and their relationship with the
QPTs.

The Hamiltonian of the general anisotropic XY model in
a transverse field is given by

IN{/\,-
H=—

3 2 E[(l +y)otol, +(1— y)o-fafﬂ]-i-ha'f}.

(D

Here A; is the nearest neighbor interaction, o the ath
Pauli matrix (o = x, y, or z) on site i, N the number of
sites, y the degree of anisotropy, and % a transverse field.
The quantum Ising chain in a transverse field and aniso-
tropic XY chain correspond to y = 1 and h = 0, respec-
tively. If A; depends on the position i, the system is a
nonuniform chain. In our discussion, the A; takes two
values according to periodic and quasiperiodic sequences.

By use of the famous Jordan-Wigner transformation
[25], the Hamiltonian can be written as

N
1
i,j=1

where c; and clT are the anticommuting fermion operators.
Aij = _%)‘iﬁj,H—l _%/\jaj,i—l - haijs B;;= _%/\iyéj,i+1 +
%/\j')"sj,i—ﬁ Ay =— %/\N = Ay, Biy = %ANY = —By;.
The quadratic Hamiltonian equation (2) can be diagonal-
ized by Bogoliubov transformation,
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: 3) = (1= a2 + 4h2(1 + a? + 2a cos(20)]. (7)
77 ) ;[(d)k’ + lp"’)c + (i — Yl where k = Zme (m=— % +1,...,%)and N is the number

which yields H = S, Ay(n)n, —
excitation energy Ay is

1). The eigenequation of

Ay =11 = YA Aot ia + A by
+ a1+ )2 A2 +4R% + (1 — y)? A2 1Yy,

+ Aty i T 351 = YA Yy a 4)

Therefore, the partition function of the system is

Z = Tr(eiﬂH) = eilgAk(”kfl/z)
12
= l_[(e_,BAk + 1)eBM/2, )

where n, = 77;{ 7y = 0,1 and B = 1/kgT. The partition
function zeros correspond to

A, = i2n + D) aksT = it, (6)

where n is an integer and ¢ is an effective temperature.
Periodic and quasiperiodic quantum Ising chains.—In
this case, y = 1. The A, takes two values based on periodic
or quasiperiodic sequences. First, we discuss the period
case. For simplicity, we consider a period-two case, i.e.
Ay = Aand Ay = aA. We shall take A = 1 without loss
of generality. By assuming that ¢,, = Ae™"* and ,,,, =
Be'@T Dk we can obtain A, analytically, which yields
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FIG. 1. The PFZs of four kinds of periodic and quasiperiodic
quantum Ising chain in the complex & plane at effective tem-
perature ¢t = 0, 0.2, and 0.4 (from inside to outside), respectively.
(a) Period-two, (b) period-three, (c) Fibonacci, and (d) general
Fibonacci chains. &« = 0.5 and N = 300.

of cells in the chain. The QPT point is determined by A, _.
Therefore, the PFZs in a complex field plane are

h? = acos(2k) — 2

= \Ja?(cos(2K) — 1) — (1 + a? + 2a cos(2K) 2
)

It is easy to check that the PFZs lie on a circle with radius
equal to v/a? + (1 + a?)r> + r*. In Fig. 1(a), we give the
numerical results of PFZs of the period-two quantum Ising
model in a complex A plane at zero temperature and two
finite temperatures. It can be seen that the PFZs lie on the
four arcs in a circle at finite temperature. At 7 = 0, the
PFZs lie uniformly on a circle of radius a'/?. The circle
cuts the positive real axis at the QPT point h, = a'/2.

For the period-three case, Ay; = 1 and Az;+1 = A3 =
«. The numerical results of PFZs in the complex 4 plane at
zero temperature and two finite temperatures are shown in
Fig. 1(b). Generally, at finite temperature, the PFZs do not
lie on a circle. But, at T = 0, the PFZs lie uniformly on the
circle with radius a?/3.

For the quasiperiodic and aperiodic chains, it is well
known [23] that the system has only one QPT point at
hY =TT, A;, where N is the length of the chain. The QPT
of the aperiodic chain belongs to the universality class of a
uniform quantum Ising chain and of a random quantum
Ising chain for @ <0 and >0, respectively. w =
In|l,|/1nl; (I, are the leading and next-to-leading eigen-
values of the substitute matrix) describes the fluctuations in
the coupling.

As typical examples, we study the two-component
Fibonacci and general Fibonacci chains. For the general
Fibonacci chain, the A; takes two values Ay, = a and Ap =
1 arranged in a general Fibonacci sequence. The general
Fibonacci sequence S, is constructed recursively as
Si1 = 1S}, ST}, with Sp = A and S} = A\y. n=m =
1 corresponds to the wusual Fibonacci sequence.
Figures 1(c) and 1(d) plot the PFZs of the Fibonacci (w =
—1) and general Fibonacci (im =3, n =1, w = 0.3171)
chains at zero temperature and two finite temperatures.
They are similar to those of the periodic cases. Although
the QPTs of two quasiperiodic chains belong to two differ-
ent universality classes, the distributions of PFZs at zero
temperature are the same. It can be found that the PFZs lie
uniformly on the circles of radius ([T, A,)"/" for all
nonuniform quantum Ising chains at zero temperature.

Periodic and quasiperiodic anisotropic XY chains.—
Different from the quantum Ising chain, the number of
QPT points of the periodic and quasiperiodic anisotropic
XY chains is more than one at some regions of parameter
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[24]. This is due to the competition of periodicity and
anisotropy. For example, a period-two chain corresponding
to Ay; = 1 and Ay;4; = a has two quantum phase transi-
tions for y <y, = % The quantum phase transition
points are

ho—= WA+ aP —(1—-a)3?y? for0<a,y<l
WA —aP = (1 +a)3?y? fory<ize
&)

For the period-three chain, we take A;; = 1 and A3, =
A3;1p = a as an example. The QPT points have been
obtained numerically, which show similar results with
that of the period-two chain. For a given «, there is a
critical y.(a). When y < vy, the system has three QPT
points and one QPT point otherwise. The properties of the
different phases in the period-two and -three cases are
discussed in Ref. [24].

For the period-two case, the spectrum of excitation can
be obtained [24] analytically from Eq. (4) by the same
method as that for periodic quantum Ising chain, which
yields

A2, = YA =A% - 4B] (10)

with  A=1[4r? + (1 +y*)(1 + a?) +2(1 — y?)acos(2k)]
and B ={[(1 — y?)/2]acos(2k) + h*}*> + {[(1 — y?)/4]a X
cos(2k) + (h*/2)}1 + y*)(1 + a?) + 1—16[(1 — v +a*(1+
YA + )2 + (1 — y)*] — Qacos(2k) + 1 + a?)h?.

In Fig. 2, we give the numerical results of PFZs of
period-two and -three chains in the complex transverse
field at zero and a finite temperature. From Fig. 2, we
can see that, for finite temperature, the PFZs form some
segments of a curve. At zero temperature, they form closed
curves. For the period-two case [see Figs. 2(a) and 2(b)],
and a given «, when y > vy, the PFZs lie in a closed curve,
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FIG. 2. The PFZs of the periodic anisotropic XY chain in the
complex / plane at zero temperature and effective temperature
t = 0.05 (from inside to outside). (a) Period-two, y = 0.4.
(b) Period-two, y = 0.1. (c) Period-three, y = 0.4. (d) Period-
three, y = 0.1. @« = 0.5 and N = 300.

which is deformed from the circle at v = 1. The closed
curve cuts the positive real axis at the QPT point. As y
decreases, the zeros closing to the imaginary axis tend to
the original point. At vy, the deformed closed curve is split
to two closed curves. The right closed curve cuts the
positive real axis at two points which correspond to the
two QPT points. The period-three case is similar to the
period-two case. At y = 1, the PFZs lie on a closed curve.
The curve is deformed as y decreases, and at y = y,. the
deformed closed curve splits simultaneously into three
closed curves. The three curves cut the positive real axis
at the three QPT points obtained by the transfer matrix
method [24].

For the quasiperiodic chain, we give the results of the
two-component Fibonacci chain at a different periodic
approximant. At a given a, it is found [24] that the number
of QPTs increases from 1 to F; (for the /th approximant of
a Fibonacci chain, and F is the /th Fibonacci number) as y
decreases. Figure 3 shows the numerical results of the
distributions of the PFZs of one approximant (F; = 8) of
the Fibonacci chain at zero temperature and four different
v. It is clear to see that for y close to 1, the PFZs lie on a
closed curve and this curve splits into three curves as 7y
decreases. As vy decreases further, the three closed curves
split to form several more closed curves. At vy tends to 0,
the PFZs lie on the F; closed curves (see Fig. 4 for three
approximants of Fibonacci at y = 0.02).

Isotropic XX chain.—It is well known that the QPT in
the XX chain (i.e. y = 0) is in a different universality class
from that in the anisotropic XY chain. For the uniform XX
chain with A; = 1, the critical field &, is in the interval
[0, 1]. The critical behavior in this model is described by
the conformal field theory of a free massless bosonin 1 + 1
dimensions with central charge ¢ = 1, whereas the critical
behavior of the anisotropic XY chain is described by the
conformal field theory of a free massless fermion in 1 + 1
dimensions with the central charge ¢ = 5.
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FIG. 3. The PFZs of the Fibonacci anisotropic XY chain in the
complex & plane for F; = § at zero temperature. (a) y = 0.4,
®) vy=0.2, (¢) y=0.11, and (d) y=0.09. « =0.5 and
N = 300.
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FIG. 4. The PFZs of the Fibonacci anisotropic XY chain in the
complex /4 plane for y = 0.02 at zero temperature. (a) F; = 5,
(b) F;=8,(c) F;=13. a = 0.5 and N = 300.

For the uniform XX chain, the matrix B in Eq. (2) is zero
and the Hamiltonian can be diagonalized easily, which
yields A, = h + cos(k), and the partition function zeros
are

h = —cos(k) +i(2n + 1)mkgT, (11

which are parallel segments in the complex & plane. At
zero temperature, the PFZs lie in the segment at the real
axis from —1 to 1. For the periodic and quasiperiodic XX
chains, the distributions of the PFZs in the complex / plane
are similar. The distribution of the XX chain in a complex
external field is quite different from those of the aniso-
tropic XY chain.

In summary, the partition function zeros of the aniso-
tropic XY chain in a complex transverse field are studied
analytically and numerically. It is found that the PFZs of
the periodic and quasiperiodic quantum Ising chain lie on
the circle and the radius goes to the values of the critical
field at zero temperature. For the periodic and quasiperi-
odic anisotropic XY chains, the closed curves are split into
two or three closed curves as the anisotropic parameter y
decreases from 1 (quantum Ising case) to O (isotropic XX
case) at a given ratio of two kinds of exchange interactions.
This is due to the competition of the periodicity and
anisotropy. At zero temperature, the closed curves cut the
positive real axis at the QPT points. For the isotropic XX
case, the situation is quite different. The partition function
zeros lie on the parallel segments which are parallel to the
real axis and the segments move to the real axis as the
temperature goes to zero. Therefore, similar to the classic
spin model, the analysis of PFZs in a complex field can
provide a useful method to study the QPT of the general
kind of solvable quantum spin models.

We are grateful to L.-J. Zou for sending us his unpub-
lished results and helpful discussions and L.-H. Tang for a
critical reading of the manuscript. This work is partly

supported by the National Nature Science Foundation of
China under Grants No. 90203009 and No. 10175035 and
by the MOE, People’s Republic of China.

*Electronic address: pqtong @pine.njnu.edu.cn

[1] C.N. Yang and T.D. Lee, Phys. Rev. 87, 404 (1952).

[2] T.D. Lee and C.N. Yang, Phys. Rev. 87, 410 (1952).

[3] S.-Y. Kim and R.J. Creswick, Phys. Rev. Lett. 81, 2000
(1998).

[4] C.-N. Chen, C.-K. Hu, and F. Y. Wu, Phys. Rev. Lett. 76,
169 (1996); R.G. Ghulghazaryan, N.S. Ananikian, and
P.M. A. Sloot, Phys. Rev. E 66, 046110 (2002); B.P.
Dolan and D. A. Johnston, ibid. 65, 057103 (2002); Luiz
C. de Albuquerque and D. Dalmazi, ibid. 67, 066108
(2003).

[5] Luiz A.F. Almeida and D. Dalmazi, J. Phys. A 38, 6863
(2005).

[6] K.-C.Lee, Phys. Rev. E 53, 6558 (1996); J. Lee and K.-C.
Lee, ibid. 62, 4558 (2000).

[7] M. Baake, U. Grimm, and C. Pisani, J. Stat. Phys. 78, 285
(1995); H. Simon and M. Baake, J. Phys. A 30, 5319
(1997).

[8] R. Burini, D. Cassi, and, L. Donotti, J. Phys. A 32, 5017
(1999).

[9] S.-Y. Kim, Phys. Rev. Lett. 93, 130604 (2004).

[10] M. Biskup, C. Borgs, J.T. Chayes, L.J. Kleinwaks, and
R. Kotecky, Phys. Rev. Lett. 84, 4794 (2000); K.-C. Lee,
ibid. 73, 2801 (1994).

[11] R.A.Blythe and M. R. Evans, Phys. Rev. Lett. 89, 080601
(2002); P.F. Arndt, ibid. 84, 814 (2000).

[12] S.M. Dammer, S.R. Dahmen, and H. Hinrichsen, J. Phys.
A 35, 4527 (2002); FE. H. Jafarpour, ibid. 36, 7497 (2003).

[13] B. Cessac and J.L. Meunier, Phys. Rev. E 65, 036131
(2002).

[14] I. Bena, F. Coppex, M. Droz, and A. Lipowski, Phys. Rev.
Lett. 91, 160602 (2003).

[15] M. Suruki and M. S. Fisher, J. Math. Phys. (N.Y.) 12, 235
(1971).

[16] E. Abraham, I. M. Barbour, P.H. Cullen, E. G. Klepfish,
E.R. Pike, and S. Sarkar, Phys. Rev. B 53, 7704 (1996);
X.Z. Wang and J.S. Kim, Phys. Rev. E 59, 222 (1999);

[17] X.Z. Wang, Phys. Rev. E 63, 046103 (2001).

[18] See, for example, S. Sachdev, Quantum Phase Transition
(Cambridge University Press, Cambridge, England, 2000).

[19] L.-J. Zou and X.B. Wang (to be published).

[20] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys.
Rev. Lett. 53, 1951 (1984).

[21] R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P.K.
Bhattacharya, Phys. Rev. Lett. 55, 1768 (1985).

[22] K. Hida, Phys. Rev. Lett. 93, 037205 (2004); A.P. Vieira,
ibid. 94, 077201 (2005).

[23] See, for example, J. M. Luck, J. Stat. Phys. 72, 417 (1993),
and references therein.

[24] P. Tong and M. Zhong, Phys. Rev. B 65, 064421 (2002);
Physica (Amsterdam) 304B, 91 (2001).

[25] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N.Y.) 16,
407 (1961).

017201-4



