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We describe a novel effect related to the controlled birth of a single Josephson vortex. In this
phenomenon, the vortex is created in a Josephson transmission line at a T-shaped junction. The
‘‘baby’’ vortex arises at the moment when a ‘‘mother’’ vortex propagating in the adjacent transmission
line passes the T-shaped junction. In order to give birth to a new vortex, the mother vortex must have
enough kinetic energy. Its motion can also be supported by an externally applied driving current. We
determine the critical velocity and the critical driving current for the creation of the baby vortices and
briefly discuss the potential applications of the found effect.
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Superconducting vortices have great potential to be used
in superconducting electronics. A great achievement of
superconducting physics today is that there are many
ways to control them [1]. However, the problem of con-
trolling the motion of a single Abrikosov vortex still re-
mains [2]. The matter is that there are always correlations
between many vortices existing in a sample as was dem-
onstrated for Hall-bar-shaped superconductors [3]. These
correlations form a very complex system that spoils such
control. Similarly, there is an intensive search for control of
Josephson vortices or fluxons. A long Josephson junction
may be used as a Josephson transmission line (JTL) in
which a Josephson vortex can propagate freely [4].
Because of their useful properties, Josephson systems
have been under intensive attention from the scientific
community [5–9]. A flux flow oscillator has been experi-
mentally realized [5]. Different realizations of a vortex
qubit have been proposed [6,7]. The quantum dynamics
of a single fluxon trapped in an annular Josephson junction
has been investigated [8]. Also, other useful applications
include Josephson vortex ratchets, rectifiers, and diodes
[9].

In this Letter, we show how a single Josephson vortex
propagating in a long Josephson junction of a special
T-shaped geometry may give birth to a new vortex. The
geometry consists of two perpendicular JTLs forming a
T junction: main line (MJTL) and additional line (AJTL);
see Fig. 1. A new vortex is created when a mother vortex
moving along the MJTL is passing the T junction. Just at
the T junction, a new Josephson vortex begins its life and
motion in the direction perpendicular to the MJTL. The
process of creation of a new vortex depends on the energy
of the original ‘‘mother’’ vortex. If the vortex is moving
very slowly, it does not have enough kinetic energy to give
birth to a new vortex. Then the T junction acts as a barrier
and the mother vortex is just reflected from it. However, if
the mother vortex has enough energy to overcome the
barrier, the new baby vortex is born. In this case, the
mother vortex continues its motion along the MJTL, while
the ‘‘baby’’ vortex moves in the perpendicular direction

along the AJTL. The novel effect described in this Letter
may entail many promising applications.

Consider a fluxon propagating with a velocity u (nor-
malized to the Swihart velocity �c) in a straight two-
dimensional strip of width W0 (here and further, we work
with normalized units, the coordinates and distances are
normalized to the Josephson penetration length �J, time is
scaled by !�1

p , where !p is the plasma frequency, and the
energy is normalized to jc�2

J�0=2�, where �0 � h=2e is
the unitary flux quantum and jc is the critical current
density). The dynamics of a superconducting phase is
described as a sine-Gordon soliton
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This is analogous to the energy of a propagating relativistic
particle with a rest mass 8W0.

Let us state the problem of a fluxon approaching the
T junction formed by two JTLs as shown in Fig. 1(a). How
will the fluxon continue its motion after striking the ob-
stacle associated with the T junction? An intuitive view is
that the fluxon splits in two in such a way that each part of
the incident fluxon travels independently in either direc-
tion. Such an ‘‘earthworm behavior’’ is confirmed by our
numerical calculations. Using energy considerations and
one-dimensional approximation, it is possible to extract
analytical formulas for the critical velocity and the critical
current.

The geometry consists of the MJTL of width W0 laying
along the X direction and the AJTL along the Y axis. The
AJTL has a width W and is connected to the main wave-
guide at the center of coordinates forming a T junction
[Fig. 1(a)]. When the fluxon approaches the fork, it expe-
riences an energy barrier. Therefore, in order to split the
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fluxon, some minimal velocity is needed. In the case of low
damping and absence of the driving current, the critical
velocity can be estimated from the following energy con-
siderations. The minimal energy for the fluxon splitting is
equal to the rest mass of the fluxon 8W0 in the MJTL plus
the rest mass of the fluxon 8W in the AJTL:

 

8W0��������������
1� u2

c

p � 8W0 � 8W:

From this equation follows the critical velocity

 uc �

����������������������������
W�W � 2W0�

p
W �W0

: (3)

The fluxon division can be supported by the external
driving current as well. Assuming W, W0 & 1, and em-

ploying the one-dimensional approximation, we may esti-
mate the critical current analytically. We use the stationary
collective coordinate approach with a single parameter x0

playing a role of a fluxon position in the MJTL [Fig. 1(a)].
The single-variable variational functions describing sta-
tionary phase profiles in the main and additional JTLs
are chosen as

 ’�x� � 4 arctanex�x0 and ’�y� � 4 arctaney�x0; (4)

correspondingly. A fluxon in the MJTL described by ’�x�
contributes to the potential energy the term ��W02�x0,
where � � j=jc is given by the ratio of the driving current
density j and the critical current density jc. The extra
energy stored in the AJTL results in the energy barrier
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Substituting the variational function ’�y� (4) into (5) and
adding the contribution of the MJTL, we obtain the effec-
tive potential energy as a function of the fluxon position x0:

 V�x0� � 4W
Z x0

�1
d��sech2�� � arctane�� � �W02�x0;

(6)

where � � y� x0 is a new integration variable. Suppose
the fluxon approaching the T junction is stopped by the
associated energy barrier. Its equilibrium position is de-
fined by the minimum of the potential energy where
V0�x0� � 0 [see Fig. 1(b)]. On the other hand, from the
condition V00�x0� � 0 follows the critical point x0 � 0,
where instability of the fluxon equilibrium position occurs.
After straightforward calculation, we obtain a very simple
formula for the critical driving current

 �c �
4W

��2W0 �W�
: (7)

At this value of the driving current, the potential well in
Fig. 1(b) disappears and a baby vortex is created.

We have used the finite element program package
FEMLAB to analyze the dynamics of a fluxon in the
T junction. Without damping, the 2D sine-Gordon equation
reads

 ’tt �r
2’� sin’ � 0 (8)

with the boundary conditions (SI units) [10]

 n � r’j@� �
n � �H	 ez�

�Jjc
; (9)

where the normal vector n is defined on the boundary @�
and points outward the junction domain �, H is the
magnetic field generated by the driving current on the
boundary @�, and ez is a normal to the plane of the
junction. The magnetic field is proportional to the applied
driving current � and is estimated from Maxwell’s
equations.

FIG. 1 (color online). (a) T junction formed by Josephson
transmission lines (top view). Widths of the main (horizontal)
and additional (vertical) transmission lines are W0 � 1 and W �
0:5, correspondingly (normalized to the Josephson penetration
length). The thick arrow represents a Josephson vortex approach-
ing the T junction. (b) Effective potential energy normalized to
jc�

2
J�0=2� as a function of fluxon position x0 in the MJTL. The

driving current is � � 0:1. The plot is due to the analytical
formula (6). The solid ball represents the equilibrium position of
the mother vortex at a finite driving current. With increasing
driving current, the equilibrium state disappears and the creation
of a baby vortex in the AJTL occurs.
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Our numerical simulations of the time-dependent two-
dimensional sine-Gordon equation with the geometry pre-
sented in Fig. 1 clearly show the cloning phenomenon
when the fluxon approaches the T junction. The fluxon
dynamics at zero driving current can be traced in Fig. 2.
The color domains represent the value of the superconduct-
ing phase difference: blue (left dark area) stands for the
phase ’ equal to zero, and red (right dark area) represents
the phase ’ equal to 2�. The intermediate color (light)
represents the Josephson vortices (see the color scale in
Fig. 2). As one can see from Fig. 2, two different types of
behavior are possible—reflection from the T junction
[Fig. 2(a)] and flux cloning [Fig. 2(b)]. We have used initial
conditions with the following form: ’�x; y; t�jt�0 for the
phase and @’�x; y; t�=@tjt�0 for its time derivative, where
the soliton function ’�x; y; t� is defined by (1). The initial
soliton position was x0 � �3, and the initial velocities are
u � 0:7 for Fig. 2(a) and u � 0:8 for Fig. 2(b). The relative
and absolute tolerances were 0.003–0.005 and 10�9, cor-
respondingly, and the time step was 0.001. We have used a
mesh consisting of 1632 elements.

Further, we have investigated numerically a set of 2D
geometries with varying JTL widths. The conditions were
the same as described above; only the width of the AJTL
was changing. Let us compare the obtained numerical
dependence of the critical velocity on the width W of the
AJTL to the theoretical prediction given by Eq. (3). This
comparison is shown in Fig. 3(a). The numerical value for
the critical velocity has been defined when the change of
behavior of a fluxon from reflection [Fig. 2(a)] to splitting
[Fig. 2(b)] occurred.

Finally, we have made a stationary analysis for a resting
fluxon when the driving current is applied. The dependence

of the critical current on the width W of the AJTL is
compared to Eq. (7) and shown in Fig. 3(b). The coinci-
dence of analytical and numerical results is very striking. A
slight deviation arises only when the width of the AJTL is
compared with the width of the main line.

It is important to note that this mechanism of vortex
creation does not violate the conservation of vorticity.
Indeed, consider a superconducting contour around the
initial vortex line covering a single flux quantum. When
the vortex line splits in two pieces, this contour appears
around either the first or the second piece. Therefore, the
contour again covers a single vorticity even after separation
of the two vortices.

The proposed system can be implemented with Nb
technology or using high temperature superconductors
(HTSCs). For Nb junctions with parameters !p �

1012s�1 and �J � 10 �m, the typical fluxon velocity
would be of the order 107 m=s, while the process of flux
cloning [Fig. 2(b)] would take a few picoseconds. For a
HTSC such as bismuth strontium copper oxide, with!p �

1011 s�1 and �J � 0:5 �m, the typical velocities would be
of the order 105 m=s. In this case, the typical cloning times
would be 1 or 2 orders of magnitude longer compared to
Nb junctions of the same dimensions.

In conclusion, we have demonstrated a novel effect
constituting the controlled birth of a Josephson fluxon at
the T junction of JTLs. We have studied this phenomenon
analytically and have carried out a detailed numerical
analysis of the dynamics of the superconducting phase.
The numerical simulations with the use of the two-
dimensional sine-Gordon equation appear in good agree-
ment with our theoretical predictions. Although some two-
dimensional Josephson junction geometries have been con-

FIG. 2 (color online). (a) Reflection of an incident fluxon propagating with velocity u � 0:7 and (b) cloning of a fluxon propagating
with velocity 0.8 higher than the critical uc � 0:76 (normalized to the Swihart velocity �c). Both diagrams represent numerical
simulations of the superconducting phase difference for the geometry in Fig. 1(a) with the use of the 2D sine-Gordon equation. The
driving current is absent. The color scale represents the superconducting phase difference ’.
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sidered earlier [11], the phenomenon may give rise to a
special class of two-dimensional Josephson junctions
where flux cloning is of a good use. Such systems can be
used for generation of periodic fluxon chains, fluxon-
antifluxon pairs, and continuous breathers. The flux clon-
ing effect can also be helpful to implement fluxon-based
logic gates [12], logic networks [13], and even terahertz
oscillators. Interesting phenomena can be anticipated if the
quantum regime is accessible. Indeed, the cloning of two
identical fluxons can be helpful for quantum information
processing. The authors hope that this Letter will stimulate
further research in this area.
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FIG. 3 (color online). (a) Dependence of the normalized criti-
cal velocity u on the ratio of widths of JTLs. The dots represent
numerical simulation of the superconducting phase dynamics
using the 2D sine-Gordon equation. The solid line represents the
theoretical predictions (3). (b) Dependence of the normalized
critical driving current �c on the ratio of widths of JTLs. The
dots represent the results of numerical calculation of the sta-
tionary 2D sine-Gordon equation. The solid line is the theoretical
prediction (7).
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