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We examine interferometric experiments in systems that exhibit non-Abelian braiding statistics,
expressing outcomes in terms of the modular S-matrix. In particular, this result applies to fractional
quantum Hall interferometry, and we give a detailed treatment of the Read-Rezayi states, providing
explicit predictions for the recently observed � � 12=5 plateau.
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Quantum systems in two spatial dimensions allow for
exotic exchange statistics, characterized by a unitary rep-
resentation of the braid group [1,2]. This representation
may be non-Abelian, acting on a multidimensional internal
Hilbert space [3,4]. So far, experimental evidence for the
existence of such anyonic statistics has only recently been
found in the (Abelian) Laughlin states of fractional quan-
tum hall (FQH) systems [5]. However, the prospect of non-
Abelian statistics is far more exciting, especially in light of
its potential application in topologically fault-tolerant
quantum computation [6,7]. There are currently several
observed FQH states, at filling fractions � � 5=2; 7=2;
12=5 [8] (and possibly � � 3=8; 19=8), that are expected
to possess non-Abelian statistics. Numerical studies [9,10]
suggest that the � � 5=2; 12=5 states should be described,
respectively, by the Moore-Read (MR) state [11] and the
k � 3, M � 1 Read-Rezayi (RR) state [10]. Clearly, as
experimental capabilities progress, it becomes increasingly
important to understand how to probe and correctly iden-
tify the braiding statistics of quasiparticles. In this Letter,
we explain how, for any system described by a topological
quantum field theory (TQFT) in the infrared limit (e.g.,
FQH systems), knowledge of modular S-matrices may be
used to extract this information from interferometry ex-
periments or, inversely, to predict the outcomes of such
experiments. As an example relevant to current experimen-
tal interests, we obtain explicit results for the RR states.

The topological properties of 2D quantum systems with
an energy gap can be described using TQFTs (or ‘‘modular
tensor categories’’ in mathematicians’ terminology, see,
e.g., [12–14]), often abstracted from conformal field theo-
ries (CFTs, see [15] and references therein). Such anyon
models are defined by (i) a finite set C of particle types or
‘‘anyonic charges,’’ (ii) fusion rules specifying how these
particle types may combine or split, and (iii) braiding rules
dictating the behavior under exchange of two particles (all
subject to certain consistency conditions). The ‘‘vacuum’’
charge is given the label 1. The antiparticle or ‘‘charge
conjugate’’ of a particle type a is denoted �a, and is the
unique charge that can fuse with a to give 1. Fusion of
particle types generalizes the addition of charges or angu-

lar momenta, and the (commutative and associative) fusion
rules are specified as a� b �

P
c2CN

c
abc, where the inte-

gerNc
ab is the dimension of the Hilbert space of particles of

type a and b restricted to have total anyonic charge c.
Fusion and braiding can be represented diagrammatically
by oriented, labeled particle worldlines, and are unaffected
by smooth deformations in which the lines do not intersect.
Charge conjugation is represented by reversal of worldline
orientation. We will refer to only one braiding relation,
known as the modular S-matrix, defined by the diagram

Sab =
1

D a b
. (1)

Here D �
������������P
ad

2
a

q
� 1=S11 is the total quantum dimen-

sion, where da, the quantum dimension of particle type a,
is the value of a single loop of that type,

da =
a

= DS a . (2)1

Some useful properties of the S-matrix are

 Sab � Sba � �S�1�ab � �S �ab: (3)

The importance of the S-matrix becomes clear when one
envisions interferometry experiments for these systems in
which a particle has two possible paths that it may take
around another particle, the two paths combining to form a
closed loop. This is typical of Mach-Zender, two-slit, FQH
two-point-contact, etc., experiments [16–22]. In such ex-
periments, an interference term arises that can be written as

 h�abjU
�1
1 U2j�abi � ei�abh�abjMj�abi � ei�abMab;

(4)

where j�abi is the initial state of particles a and b, and U1,
U2 are the unitary evolution operators for the particle a
traveling around the particle b via the two respective paths.
It has been rewritten in terms of the monodromy operator
M that contains only the contribution from adiabatically
transporting particle a around particle b (i.e., braiding),
and a phase ei�ab that absorbs all other contributions (i.e., it
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contains the free particle dynamics and the Aharonov-
Bohm phase from a background magnetic flux). For
Abelian particles, jMabj � 1, but with non-Abelian statis-
tics, jMabj may be less than 1 and can be calculated by
TQFT methods. The braiding term is diagrammatically
represented by winding the worldline of particle a around
that of particle b, taking the standard closure (where each
worldline is closed back on itself without additional braid-
ing) and dividing by the quantum dimension of the two
particle types [23]. Thus, the resulting monodromy matrix
element can be written entirely in terms of the S-matrix:

M ab =
1

dadb a b
=

SabS
S aS b

. (5)11

1 1

This result is particularly nice because the S-matrix is
typically more readily computable than the complete set
of braiding or fusion rules, and, in fact, has already been
computed for most physically relevant theories. In particu-
lar, this applies to the class of theories described by CFTs
generated as products and cosets of Wess-Zumino-Witten
theories, which includes all proposed non-Abelian FQH
states (see [24]). In the case of the product of two CFTs or
TQFTs, the particle types are denoted by pairs of particle
labels, one from each theory, and the S-matrix of the
product theory is the tensor product of the S-matrices of
the parent theories. In the Gk=Hl coset theory, the new
labels are also formed as pairs of labels from the parent Gk
and Hl theories, but now there are branching rules which
restrict the allowed pairings. Also, different pairs of labels
may sometimes turn out to represent the same particle type,
a phenomenon described by ‘‘field identifications.’’ This
means that there will be only one row and column in the
S-matrix for any set of identified labels. Despite these
complications, the coset’s S-matrix elements are described
by the simple formula [25]

 S�G=H�
�a;p��b;q� � c�G;H; k; l�S�G�ab

�S�H�pq ; (6)

where a, b and p, q are, respectively, labels of the Gk and
Hl theories, and c�G;H; k; l� is an overall normalization
constant that enforces unitarity of the S-matrix [but is
irrelevant in Eq. (5)].

We now focus specifically on FQH systems, because
they represent the most likely physical candidates for
finding non-Abelian statistics. We consider the experiment
originally proposed in [17] for measuring braiding statis-
tics in the Abelian FQH states, which was later adopted for
the non-Abelian case in [18] and addressed again in the
context of the � � 5=2 state in [21,22]. A somewhat
similar experiment has recently been implemented to probe
the Abelian � � 1=3 state [5]. The experimental setup is a
two point-contact interferometer composed of a quantum
Hall bar with two front gates on either side of an antidot
(see Fig. 1). Biasing the front gates, one may create con-
strictions in the Hall bar, adjusting the tunneling ampli-
tudes t1 and t2. Tunneling between the opposite edge
currents leads to a deviation of �xy from its quantized

value, or equivalently to the appearance of �xx. By mea-
suring �xx one effectively measures the interference be-
tween the two tunneling paths around the antidot. The
tunneling amplitudes t1 and t2 must be kept small, to
ensure that the tunneling current is completely due to
quasiholes rather than higher charge composites [26] and
to allow us to restrict our attention to the lowest order
winding term.

In order to be able to influence the resulting interference
pattern, we envision several experimentally variable pa-
rameters: (i) the central gate voltage allowing one to con-
trol the number n of quasiholes on the antidot, (ii) the
perpendicular magnetic field B, (iii) the back gate voltage
controlling the uniform electron density, and (iv) the side
gate that can be used to modify the shape of the edge inside
the interferometric loop [21]. The intention is to be able to
separately affect the Abelian Aharonov-Bohm phase and
the number of quasiholes on the antidot; from this point of
view having all these controls is redundant, but may be
beneficial for experimental success.

The longitudinal conductivity is proportional to the
probability that current entering the bottom edge will leave
through the top edge, which to lowest order is

 �xx / jt1j
2 � jt2j

2 � 2 Reft�1t2h�abjU
�1
1 U2j�abig

� jt1j2 � jt2j2 � 2jt1t2jjMabj cos��� �ab�: (7)

In this equation � � �ab � arg�t2=t1� can be varied by
changing B (keeping the quasihole number fixed), the
relative tunneling phase, and/or the edge shape around
the central region. We have written Mab � jMabjei�ab ,
and will be interested in the elements where the particle
a which tunnels carries the anyonic charge of a quasihole,
while the ‘‘particle’’ b is a composite of n quasiholes on the
antidot, carrying an anyonic charge allowed by fusion [27].

We will now apply this formalism to the RR states and,
in particular, look more closely at the k � 3, M � 1 case,
which, by a particle-hole transformation (which generally
inverts the statistics and has the effect of conjugating the
S-matrix), is the expected description of � � 12=5. The

t1 2t

SF

F F

F
y

x

FIG. 1 (color online). A two point-contact interferometer for
measuring braiding statistics. The hatched region contains a
FQH liquid. The front gates (F) are used to bring the opposite
edge currents (indicated by arrows) close to each other to form
two tunneling junctions. Applying voltage to the central gate
creates an antidot in the middle and controls the number n of
quasiholes contained there. A side gate (S) can be used to change
the shape and path length in the interferometer.
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anyon theory for RR states at � � k=�kM� 2� can be
described as RRk;M � U�1�k;M � Pfk, where U�1�k;M is
due to the electric charge and Pfk represents the
Zk-parafermion theory [28]. The U�1�k;M part of this theory
is a simple Abelian contribution, essentially labeled by
integral multiples of the charge/flux unit � e

kM�2 ;
2�
ke�, where

�e is the electron charge and 2�
e � �0 is the magnetic flux

quantum (in units @ � c � 1). The fusion rules for these
labels are just the addition of charge/flux and the S-matrix
is Snanb � einanb2�=k�kM�2�=

����������������������
k�kM� 2�

p
.

The Pfk part of this theory requires more explanation
(for a discussion of its braiding, see [29]). Essentially, we
use that the theory is equivalent to the coset SU�2�k=U�1�k.
As a consequence, the Zk-parafermion sector’s anyonic
charge can be labeled by the corresponding CFT fields
��
� , where � 2 f0; 1; . . . ; kg and � 2 Z, subject to the

identifications ��
� � ��

��2k � �k��
��k and the restriction

�� � � 0�mod2�, giving a total of 1
2 k�k� 1� fields. The

fusion rules for this sector are (as for the CFT fields)

 ��a
�a
���b

�b
�

Xminf�a��b;2k��a��bg

��j�a��bj

��
�a��b

: (8)

Their quantum dimensions are

 d��
�
� sin

�
��� 1��
k� 2

��
sin
�
�

k� 2

�
: (9)

Special fields in this theory are the vacuum 1 � �0
0, the

Zk-parafermions  l � �0
2l, the primary fields �l � �l

l,
and the Zk-neutral excitations "j � �2j

0 , where l �
1; . . . ; k� 1 and j � 1; . . . ; b�k� 1�=2c. From (6) we find
that the S-matrix for Pfk is

 S
��a
�a

�
�b
�b

�
sin���a�1���b�1��

k�2 �

D sin� �k�2�
e�i�a�b�=k: (10)

The U�1�k;M and Pfk sectors combine so that the anyonic
charges in the RRk;M theory are (defining a shorthand)
�̂n � �

ne
kM�2 ;

n2�
ke ;�

�n
n �, where we have n 2 Z and �n2

f0;1; . . . ;kg such that �n � n � 0�mod2�. Quasiholes carry
charge 1̂1 � �

e
kM�2 ;

2�
ke ; �1�. The S-matrix for RR anyons is

obtained by multiplying the S-matrix elements of the two
sectors for anyons a and b, and renormalizing by some
overall constant c (which we will not need explicitly):

 Sab�csin
�
��na�1���nb�1��

k�2

�
e�inanbM�=�kM�2�: (11)

Since the tunneling current is dominated by quasiholes
[30], we need only the monodromy matrix elements

 M1̂1;�̂n
�

cos
�
��n�1��
k�2

�
cos� �k�2�

e�inM�=�kM�2�: (12)

We note that RR2;1 is the MR state, and we can easily check
that this exactly matches the results of [18,22].

We now turn to the RR3;1 theory for � � 12=5. The Pf3

theory has six fields: 1,  1,  2, which have quantum

dimension 1, and �1, �2, ", which have quantum dimen-
sion� � 2 cos�5 �

1�
��
5
p

2 (the golden ratio). The total quan-

tum dimension is D �
�������������������
3��� 2�

p
and the S-matrix is

 S �
1

D

1 1 1 � � �
1 ! �! � �! �! �
1 �! ! �! � �! �
� � �! �! �! � �! �1
� �! � �! � �! �! �1
� � � �1 �1 �1

2
666666664

3
777777775
;

where ! � ei2�=3, and the columns and rows are in the
order: 1,  1,  2, �1, �2, ". Quasiholes in the RR3;1 theory
have anyonic charge �e5 ;

2�
3e ; �1�. It is useful to consider a

Bratteli diagram (which has periodicity 6 in n) to keep
track of the allowed Pf3 charge for a corresponding value
of n:

3  2 1  1

2 " �2 �1 "

�n 1 �1 " �2

0 1  1  2 1

n! 0 1 2 3 4 5 6

The longitudinal conductivity in the interferometry experi-
ment will be

 �xx/jt1j2�jt2j2�2jt1t2j����2�N� cos
�
��n

4�
5

�
; (13)

where N� � 1 if the n quasihole composite on the antidot
has Pf3 charge with quantum dimension � (i.e., �1, �2, or
") and N� � 0 if the composite has quantum dimension 1
(i.e., 1,  1, or  2). Thus, depending on the total Pf3 charge
on the antidot, one of two possible conductivity values will
be observed. The Pf3 charge may then be determined by
varying � (using the side gate) to measure the interference
fringe amplitude, which is suppressed by a factor of��2 	
0:38 whenN� � 1. This behavior indicates the presence of
non-Abelian statistics, and distinguishes this state from
other proposals for the same filling fraction (e.g. composite
fermions). To describe � � 12=5, we apply a particle-hole
transformation to RR3;1, replacing S with �S (hence, M with
�M), which changes the sign in front of n in Eq. (13). In

more general scenarios where composites of quasiholes or
quasielectrons may be used instead of the single tunneling
quasiholes, identical behavior (up to the phase) will be
exhibited by quantum dimension � composites, while
quantum dimension 1 composites exhibit a single unsup-
pressed interference pattern at any n.

Despite the relatively simple nature of these interferom-
etry experiments, they provide a surprisingly large amount
of information about the system being probed. This is
because the experiments essentially measure the S-matrix
of the TQFT that describes the system. The S-matrix fully
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determines the fusion rules through the Verlinde formula
[31]: Nc

ab �
P
x2CSaxSbxS �cx=S1x. Additionally, a theorem

known as ‘‘Ocneanu rigidity’’ states that, given a set of
fusion rules, there are only finitely many corresponding
TQFTs with these rules [32]. In other words, knowledge of
the S-matrix is sufficient to pin down the topological order
of the state to a finite number of possibilities. Clearly, it
may be difficult to measure all elements of the S-matrix by
the methods described here. It appears particularly chal-
lenging to invoke tunneling of anyonic charges different
from that of the quasihole. Still, the S-matrix has many
special properties and so even a partial measurement of
fairly low accuracy may be sufficient to determine it. In
addition to Eq. (3), any S-matrix must satisfy a set of
constraints coming from the Verlinde formula and the
fact that the fusion coefficients are integers. Also, the first
row of the S-matrix must be real and positive, because of its
relation to the quantum dimensions (and in fact, all ele-
ments are numbers with special algebraic properties).
Finally, given an S-matrix, there must be a diagonal matrix
T which together with S generates a representation of the
modular group SL�2;Z�, implying that �ST�3 � S2. For
any fixed number of particle types, only finitely many
different S-matrices are known (and it is conjectured that
only finitely many exist). Hence, once some the S-matrix
elements and the number of different charges are known
from measurements, one may look at the finite list of
known S-matrices and hope to identify one that matches.
In conclusion, for any two-dimensional system, interfer-
ence experiments as described here can in principle deter-
mine the fusion rules and even a finite set of TQFTs, one of
which will fully describe the topological order.
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