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There has long been speculation about the nature of the � resonance. For three decades Jaffe has argued
for a tetraquark composition, while others have claimed it is largely a glueball. A key pointer to its nature
is its coupling to two photons. Consequently, there have been recent proposals to observe this important
scalar hiding in �� ! �0�0. We show here that the � is already crouching in this cross section exactly as
measured 20 years ago. What is new is that precise knowledge of the position of the � pole, provided by
the analysis of the Roy equations, now allows its two photon coupling to be accurately fixed. Its two
photon width is found to be �4:1� 0:3� keV, a value far too large for a wholly gluonic, or even a
tetraquark, state.
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New information on the �.—The � resonance has for
long been a mnemonic for the highly correlated two pion
exchange that generates the longest range isoscalar force
revealed in nuclear binding. It is also the name of the scalar
field, the nonzero vacuum expectation value of which
breaks chiral symmetry, giving mass to all light hadrons
[1]. While isoscalar �� interactions grow rapidly above
threshold, they have none of the features readily identified
as a textbook resonance, quite unlike the � for instance. If
�� mass distributions, whether from classic meson-meson
reactions or from final state interactions of decay products,
are fitted with Breit-Wigner forms, then inevitably one
finds a pole in the complex energy plane. However, fits
give a position varying wildly from one analysis to another
with both masses and widths from 350 MeV to 1 GeV
[2,3].

Renewed interest in using the Roy equations, which
encode the analyticity provable in axiomatic field theory
with the three channel crossing symmetry of �� scatter-
ing, has, when combined with chiral constraints and new
experimental information, allowed a narrow corridor of
possible amplitudes from 800 MeV down to threshold, as
found by Colangelo, Gasser, and Leutwyler [4]. Recent
recognition that the Roy equations can be evaluated not
just on the real axis but in the complex energy plane has
determined the position of the lightest resonance in QCD,
the �, to be at ER � 441� i272 MeV within small un-
certainties [5]. But what is the nature of this state in the
spectrum of hadrons? Is it a conventional �qq state of the
quark model [6]? Is it a tetraquark meson [7], composed of
qqqq, with the expected �qq nonet still higher in mass [8,9],
or is it largely glue [10,11]? The coupling to photons is a
key guide to a state’s composition.

Now the same precise information on �� amplitudes
that determines the existence and the position of the pole
allows the amplitude for ��! �� to be accurately deter-
mined. Exploiting this is most readily done by the use of
partial wave dispersion relations. While the � appears in
the I � 0 channel, we will also need the I � 2 amplitude.
The calculation follows the philosophy of [12,13].

Two photon amplitude.—Let us begin by considering the
S-wave ��! �� amplitudes with isospin I, F I�s�, where
s is the square of the �� invariant mass. Each of these
amplitudes, with I � 0, 2, being complex has a phase
�I�s� along the right-hand cut, when s is above the two
pion threshold, i.e., s > sth � 4m2

�. Unitarity, through
Watson’s theorem, requires the phase of each of these
partial waves to be the same as the phase of the corre-
sponding �� partial wave amplitude in the elastic region
[14]. To implement this constraint we define the Omnès
function, �I�s�,

 �I�s� � exp
�
s
�

Z 1
sth

ds0
�I�s0�
s0�s0 � s�

�
; (1)

which by construction has phase�I�s� for s > sth. Thus the
��! �� S-wave amplitudes, F I�s�, can be written as
PI�s��I�s�, where PI�s� is a function which is real along
the right-hand cut with s > sth. The phase,�I, is simply the
phase shift in the region of elastic unitarity [14], which
applies up to �KK threshold, since multipion channels are
negligible below 1.2 GeV. Moreover, in the low energy
region of interest, the differences in phase above 1 GeV
affect the results little as has been checked by replacing the
��! �� phase with that for ��! �KK. Such a change
is equivalent to assuming that the �� final state in the two
photon process is only accessed through a �KK intermediate
state. Outside the narrow confines of the f0�980� region,
this would be an extreme possibility. Nevertheless, the
effect is small and included in the uncertainties we quote.
Representative input �� S-wave phases, �I�s�, for I � 0,
2 and the resulting Omnès functions are shown in Fig. 1.

Now Low’s low energy theorem [15] requires that as
s! 0, and t, u! m2

�, at the threshold for Compton scat-
tering ��! ��, the full scattering amplitude is equal to
its one pion exchange Born term. It is such crossed channel
exchanges that generate the left-hand cut contribution to
the �� ! �� partial wave amplitudes, which we denote
collectively by LI�s�. Because the pion is so much lighter
than any other hadron, pion exchange determines the dis-
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continuity across this left-hand cut not just at s � 0 but in
the whole region 0> s>�M2

V , beyond which other ex-
changes like �;! start to contribute [16]. While the Born
term assumes pointlike couplings for the pion, any form-
factor dependence only affects the left-hand cut for s <
�M2

V , since it is vector masses that set the scale for such
charged radii. Consequently, the left-hand cut from s � 0
to s ’ �0:5 GeV2 is precisely known and that is all we
require to fix the amplitude in the region of s � sR � E2

R
shown in Fig. 2.

To see how, let us construct the function GI�s� �
�F I�s� �LI�s���I�s��1, which only has a right-hand
cut. Its discontinuity is LI�s� sin�I�s�=j�I�s�j, which is
accurately known at low energies. This information is
embodied in a dispersion relation for the function GI�s�
using a contour like that in Fig. 2. While the behavior of
GI�s� means the integral at infinity converges with just one

subtraction, it is more convenient for our purpose to ensure
that the integrals are dominated by the known low energy
regime of js0j<M2

�. This is achieved by making two
subtractions:

 F I�s� � LI�s� � cIs�I�s� �
s2

�
�I�s�

�
Z 1
sth

ds0
LI�s0� sin�I�s0�

s02�s0 � s�j�I�s0�j
; (2)

The constants cI are specified by the QED low energy
theorem and chiral dynamics. These two conditions apply
to amplitudes with pions of definite charge (which are
combinations of those with I � 0, 2). Low’s theorem re-
quires [17] that the S-wave amplitude for �� ! ����,
F���s� ! B�s� �O�s2� as s! 0, where B�s� is the Born
S wave, while chiral dynamics demands that the S-wave
amplitude for ��! �0�0 F 00�s� � 0 at s � O�m2

��. At
one loop level in Chiral Perturbation Theory [18],
F 00�s� / T ����� ! �0�0�; fixing the Adler zero ex-
actly at s � m2

� at this order. However, its precise position
hardly affects our results.

These relations allow us to determine the �� ! ��
cross section in the low energy region. Precision comes
from the more accurate determination of the �� S-wave
amplitudes obtained by combining new results from de-
cays like Ke4, J= ! �X, and D! �X [19] with the Roy
equations, which fixes the pole at s � sR. This calculation
reproduces the cross section for the production of charged
and neutral pions as measured by Mark II [20] and Crystal
Ball [21] collaborations, respectively, in the low energy
region with no free parameters. The predictions for the
neutral cross section are shown in Fig. 3. The range shown
delineates the uncertainties due to (i) different �� phases
�I�s� above �KK threshold and (ii) different positions of the
Adler zero in the �0�0 channel. Notice that the cross
section is very nearly unique up to 450 MeV.

Two photon coupling of the �.—Of course, the I � 0
�� phase and Omnès function, shown in Fig. 1, know
about the � pole at s � sR deep in the complex plane close
to both the right- and left-hand cuts of Fig. 2. Not only can
we determine the �� amplitudes F I�s� along the upper
side of the right-hand cut on the physical sheet where
experiments are performed, but everywhere on this first
sheet. In particular, we can determine the I � 0 amplitude
at s � sR, marked in Fig. 2. The right-hand cut structure of
the �� ! �� amplitude mirrors that of the corresponding
hadronic amplitude, T I, for ��! �� in the region of
elastic unitarity [22]:

 F I�s� � �I�s�T I�s�; (3)

where the function �I�s� represents the intrinsic coupling
of �� ! ��, while T describes the final state interac-
tions, which color and shape the electromagnetic process.

At s � sR on the first sheet, the amplitude T I�0�s� �
i=2��s�, since the S-matrix element vanishes at this point.

0.4 0.6 0.8
V

SR

s

KK

FIG. 2. The complex s-plane structure of the �� ! �� am-
plitudes, F I�s�. � labels the start of the left-hand cut controlled
by the pion exchange Born term, while V denotes where the
vector exchanges �;! start to contribute to the discontinuity.
The right-hand cut is elastic effectively up to �KK threshold. The
point s � sR is the position of the � pole [5]. The plot is drawn
to scale so 0.4, 0.6, 0.8 are the c.m. energy in GeV.
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FIG. 1. Representative I � 0, 2 ��! �� S-wave phases and
moduli of the Omnès functions, �I�s�, related by Eq. (1).
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��s� is, as usual, the phase-space factor ��s� �
�������������������
1� sth=s

p
.

The dispersion relation on the first sheet then determines
the coupling function ��sR�, which, not having a right-
hand cut, has the same value on the second sheet. We
introduce subscripts to label the sheets I and II, while
the superscripts continue to denote isospin.

In the neighborhood of the pole on the second sheet, the
�� ! �� S-wave amplitude is given by

 F 0
II�s� ’

g�g�
sR � s

; while T 0
II�s� ’

g2
�

sR � s
: (4)

Even if factorized residues are not strictly appropriate for
such a very short-lived state, Eqs. (6) and (7) below provide
a physically meaningful and unambiguously defined [3]
�� width. �0�sR� determines the ratio of g�=g� for the
isoscalar resonance. Now the hadronic amplitude on sheet I
is related to that on sheet II by

 

1

T II�s�
�

1

T I�s�
� 2i�; (5)

so that

 g2
� � lim

s!sR

�s� sR�F 0
I �s�

2

�T 0
I �s� � i=2��

: (6)

Combining the representation cited above [19] for the
hadronic amplitude, T 0, on sheet I with the present dis-
persive calculation then gives the two photon coupling of
the �, which specifies its radiative width to be [23]

 ���! ��� �
�2j��sR�g2

�j

4M�
� �4:09� 0:29� keV: (7)

That this is 10 times larger than the signal seen in �� !
�0�0 cross section requires some explanation, particularly
in the light of proposals, e.g., [24], to search for the � in
this channel. If we consider this process and for the mo-
ment simply ignore the requirement that final state inter-
actions shape the �� distribution in a well-defined way,
then one would say that, with no Born contribution, the
cross section should reflect the appearance of resonant
structures if they exist. If this is the �, then one can read
off from the observed cross section in Fig. 3 of 10–12 nb a
�� width an order of magnitude smaller than we have
deduced. However, this is too naı̈ve.

In hadronic channels, I � 2 amplitudes, which are ex-
otic in the quark model, are much smaller than those with
I � 0. In contrast in this two photon process both I � 0, 2
are equally important. The � appears in the I � 0 ampli-
tude, and this can only be separated from data by analyzing
�� ! ���� and �0�0 together [23].

As we have seen what is really happening is that the
Born amplitude is modified by final state interactions to
ensure Watson’s theorem is satisfied. As a result, the I � 0
and 2 amplitudes are no longer real and exactly canceling
in the neutral channel. A vectorial representation of this is
shown at 400 MeV in Fig. 4. The I � 0 component has the
phase of I � 0 S-wave �� scattering, while that with I �

2 has the phase of the corresponding isotensor S wave. In
Fig. 4 the vector OC �F 0 �F 2=

���
2
p
� is

��������
3=2

p
times the

charged channel S wave, while the vector ON �F 0 ����
2
p

F 2� is �
���
3
p

times the neutral one. One sees that the
square of the neutral channel S wave (which dominates its
cross section) is a factor of 12 smaller than the modulus
squared of the I � 0 S wave. It is in this amplitude that the
� is to be found. This delivers an I � 0 cross section
averaged across the � consistent with a 4 keV width
determined from the pole residue.

How such a two photon width translates into ideas about
the composition of the � relies on models, which assume a
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FIG. 4. ��! �� S-wave amplitudes at 400 MeV with defi-
nite isospin and with definite charges as indicated by the super-
scripts. B is the Born amplitude S-wave for comparison. OC and
ON define the directions of the charged and neutral pion ampli-
tudes as given by the vector sums described in the text.
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FIG. 3. Results of the dispersive calculation for the low energy
��! �0�0 cross section for different input phases �I above
�KK threshold, each with 3 different positions of the Adler zero at
s � 1=2, 1, 2m2

�, compared with the Crystal Ball data [21]
scaled to the whole angular range.
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single component. Its width is too large for a low lying
glueball. Despite crouching in the cross section �� !
�0�0, the ‘‘red dragon‘‘ of Minkowski and Ochs [11]
with low mass is unlikely to be gluonic. Indeed it would
appear unlikely to be a �qq state according to the older work
of [25]. However, 4 keV is just what Chanowitz [26] and
Barnes [27] have predicted for such a quark state. If it is the
scalar companion of the f2�1275� with a � �uu� �dd�=

���
2
p

composition, adapting a positronium result to the nonrela-
tivistic quark model gives

 ���! ���=��f2 ! ��� � 15=4� �m�=mf2
�n; (8)

with relativistic corrections estimated in [28] to be 	0:5.
The power n depends on the shape of the potential, being
n � 3 for a Coulomb form. With ��f2 ! ��� ’ 3 keV [2],
our calculated � width is reproduced by n ’ 0:3–1, per-
haps reflecting the long range nature of the binding needed
for this scalar. Such a state, which is very short lived (its
total width is	550 MeV), inevitably has multiquark com-
ponents in its Fock space. However, these may well be
more diffuse than any �qq component and so less able to
annihilate readily into photons. In keeping with this,
Achasov [29] and Narison [30] predict tetraquark states
to have tenths of keV as radiative widths. Thus in terms of
simple components a 4 keV width is difficult to reconcile
with either a tetraquark or glueball composition, and points
to a conventional �uu, �dd structure. Hopefully the present
result will motivate dynamical calculations in strong cou-
pling QCD to detail the Fock space decomposition of the
�: �qq, qqqq, gg, ��, etc. Comparison with the 4 keV
width deduced here will teach us whether this enigmatic
scalar does indeed couple to photons through its �qq
components.
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