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We consider the possibility of adding a stage to a dilution refrigerator to provide additional cooling by
‘‘filtering out’’ hot atoms. Three methods are considered: (1) effusion, where holes having diameters
larger than a mean-free path allow atoms to pass through easily; (2) particle waveguidelike motion using
very narrow channels that greatly restrict the quantum states of the atoms in a channel; (3) wall-limited
diffusion through channels, in which the wall scattering is disordered so that local density equilibrium is
established in a channel. We assume that channel dimensions are smaller than the mean-free path for
atom-atom interactions. The particle waveguide and the wall-limited diffusion methods using channels on
order of the de Broglie wavelength give cooling. Recent advances in nanofilters give this method some
hope of being practical.
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We investigate here the possibility cooling a gas by
‘‘filtering out’’ hot atoms, perhaps as an adjunct to a
dilution refrigerator with solutions of 3He in liquid 4He
[1]. Our method involves passing a degenerate Fermi gas
through narrow constrictions formed by pores in a parti-
tion. Under certain conditions we find that this particle
‘‘leakage’’ allows a lowering of the temperature of the
remaining gas. Our study adds to many recent experimen-
tal and theoretical analyses of quantum size effects in the
behavior of particles in nanopores [as in Refs. [2–4] ].

An initial idea of how to remove the hot atoms is
suggested by a technique used in electron heterojunction
physics [5–8], where the electron gas is passed through a
narrow constriction formed by a gate potential. Because
the constriction is narrow the bands of states allowed in this
‘‘particle waveguide’’ are widely separated, which means
that not all energies are allowed through. Adjusting the
states in the channel can allow selective passage of parti-
cles in states at the Fermi energy, so that one removes only
hot atoms. In such an approach the constriction must be of
order of the de Broglie wavelength of atoms at the top of
the Fermi surface, which is roughly the separation between
fermions. Because of the limited states (that is, bands) we
characterize channels of this size as ‘‘narrow.’’ We will see
that this approach can be made to work under appropriate
conditions on the nanopores.

An alternative possibility involves channels or pores
with diameters much larger than the de Broglie wavelength
but still less than the mean-free path of the fermions in the
gas, which can be large due to its 1=T2 behavior. We call
these ‘‘wide’’ pores.

We will consider different kinds of flow through the
holes of the two sizes mentioned: effusion, waveguide
flow, and wall-limited diffusion. In effusion, the holes are
by definition wide and the states in the channel remain
three dimensional with no banding. Moreover, the walls are
sufficiently smooth that the particles undergo no backscat-

tering nor do they come into equilibrium with the channel
walls. Effectively all that the pores do is to allow particles
already directed in the positive z direction to pass through
the membrane. We might hope that this would allow cool-
ing because the intensity of fast atoms passing through a
hole is larger than that of the slow atoms and these, on
average, carry more energy. Indeed it is a standard textbook
exercise [9] to show that this works for a Boltzmann gas.
But does it work for a degenerate Fermi gas?

In waveguide flow the channels are narrow enough to
have well-defined bands. Again the particles are assumed
to undergo no backscattering nor do they come into ther-
mal equilibrium with the channel walls. Nevertheless be-
cause of the bands only particles with certain energies are
allowed in the channel. If, for example, the Fermi energy of
the gas in the container is coincident with the bottom of the
lowest band one might expect that only high energy parti-
cles would get through the holes and the remaining gas
would be cooled.

A third situation is wall-limited diffusion or Knudsen
flow, which could occur in wide or narrow pores. There is
scattering at the walls including backscattering. The rate of
diffusion in the channel depends on the diameter of the
pore, the particle velocity, and the density gradient that
maintains the flow. In this and the above methods we will
assume the density difference is maintained by pumping
away the particles that pass through the membrane. Both
effusion and wall-limited diffusion were considered by one
of the authors some time ago for enhancing polarization
[10].

If the Fermi gas in the cooling cell is, say, a 1% solution
of 3He in liquid 4He at millikelvin temperature, then the
Fermi temperature is 124 mK, the de Broglie wavelength
about 3 nm, and the mean-free path is about 1 �m at
T � 15 mK.

Suppose the number of atoms in a box (B1) is N with
density n. The atoms pass through a membrane and enter a
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second box (B2) maintained (by pumping) at a much
smaller particle number N2 and density n2. The membrane
contains a great number M of holes each of diameter d and
of total hole area A (see Fig. 1.) We will compute particle
current JN and energy current JE passing through the holes.
The rates of particle and energy change, dN=dt � AJN and
dE=dt � AJE, in the container B1 combine in

 

dE
dt
� CV

dT
dt
�

�
@E
@N

�
T;V

dN
dt

(1)

to give the cooling power CVdT=dt where CV is the heat
capacity at constant volume in B1.

In the case of effusion the particle current is

 JN�1! 2� �
2

h3

Z �1
�1

dpx
Z �1
�1

dpy
Z �1

0
dpz

pz
m
np;

(2)

where np is the momentum distribution function and the
factor of 2 accounts for spin degeneracy. There is a simi-
lar expression for JE. For a classical gas passing through
wide holes we find a cooling power given by
�nkBAT�kBT=2�m�1=2. The minus sign implies cooling
in agreement with the usual textbook treatment [9]. In the
degenerate limit effusive cooling fails.

For particle waveguide motion (in narrow holes) we
need to take into account the banding of the states due to
the limited transverse motion; the energies are given by
�nz � �n � �z with �z � @

2k2
z=2m. We will assume a

square cross section with width d so that �n � �0�n where
�0 � �2

@
2=�md2� and �n � 1; 2:5; . . . �n2

x � n
2
y�=2; . . . .

(Using a circular cross section gives no significant differ-
ences in our final results.) In this case Eq. (2) is replaced by

 JN�1! 2� �
2

d2h

X
n

Z �1
0

dpz
pz
m

1

�e���z��n��� � 1�
(3)

with� the chemical potential ( � �F at low T). In terms of
the one-dimensional Fermi integrals Fl��� �

R
1
0 dzz

l1=�ez�� � 1�, the cooling power for the waveguide
case is

 CV
dT
dt
� �

2A

d2h�2 pW; (4)

where

 pW �
X1
n�1

�F1��n� � ��� ��n� ln�1� e�n�	: (5)

The filling of the bands in the channels is determined by
�n������n� with � � �kBT��1 and � � ��@E=@N�T;V
is a property of the gas in the cooling chamber (B1). For
cooling pW must be positive. If � � �� and t � T=TF
then the relation between density and chemical potential
leads to the usual transcendental equation for �:

 

3
2 t

3=2F1=2��� � 1: (6)

Further, taking the derivative of E versus N gives

 � �
G3=2���

G1=2���
; (7)

where Gl��� �
R
1
0 dzz

lez��=�ez�� � 1�2 � lFl�1. Given
a value of t from the temperature and the concentration, we
must solve Eq. (6) for �; we put that into Eq. (7) to get �.
We find it convenient to introduce the ratio of lowest band
edge to Fermi energy y � �0=�F so that ��n � y�n=t.

For numerical calculations we fix T at 15 mK as a
reasonable incoming temperature in the cooling cycle.
Then, if the number of holes in the membrane is M �
1011, the prefactor in Eq. (4) is 13 �W. In the case of wide
holes (where waveguide flow becomes effusion), the sum
over bands in Eq. (4) becomes a double integral over
transverse momenta and in this continuum limit we find

 pW �
�
2

t
y
�F2��� � �F1���	 continuum limit: (8)

We have made no assumptions here about whether the
system is degenerate or not—just that the channel states
are now continuous. If the factor in square brackets is
positive, then it says that the smaller y, the larger is the
cooling. This result stems from just having bigger and
bigger holes, allowing more hot atoms out. But of course
there is a limit to how big the holes can be to maintain a
pressure differential across the membrane.

Next consider the highly degenerate limit of the last
form, for which Fn � �n=n and � � �, so that

 pW � �
�
12

t
y
�3 degenerate continuum limit; (9)

which agrees with a direct calculation—no cooling occurs
in that case, because there are many channel states below
the Fermi energy allowing low energy atoms to escape.
Indeed the gas left behind can then end with a higher
temperature.

FIG. 1. Schematic diagram of the apparatus. 3He in solution
with liquid 4He enters the cooling chamber B1, passes selec-
tively through the membrane into B2. A gas at lowered tem-
perature remains in B1. The 3He density in B2 is kept low by
pumping. The gas is recycled, after being recooled by a dilution
fridge, back into B1.
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For the fully classical limit we take e� to be very large so
that

 pW �

����
�
p

3

1

t1=2y
classical continuum limit: (10)

This result again agrees with the textbook classical effu-
sion result.

In Fig. 2 we show numerical results based on Eq. (5). It
is useful to plot ypW rather than pW because then all the
plots collapse onto a single curve for t > 1, as implied by
Eq. (8). The t dependence for large t is t�1=2 and we are
indeed in the asymptotic region described by Eq. (10). We
see that y � 1 is a special point with the lowest band edge
lined up with the Fermi energy. (Recall, however, that the
cooling power prefactor, which is not included in pW ,
contains a T2 so all cooling powers go to zero with de-
creasing T.) When the lowest band edge is lower than the
Fermi energy (y < 1) we lose cooling at very low T [as in
Eq. (9)], but surprisingly we regain it for larger T due to the
contributions of the higher bands. Finally for all band
edges above the Fermi energy (y > 1) we get cooling for
all T, but, because the curves in the figure are multiplied by
the factor y, the actual cooling power is diminished when
we divide out this factor, and these cases are not as useful.

The parameters we have used are not independent.
Because TF depends on x2=3, where x is the concentration,
and �0 depends on d�2, then for T � 15 mK we find the
relation

 t � 1:8
 10�2y�d�nm�	2: (11)

From the plot, we see that if we have y < 1 we get a 1=y
enhancement in cooling power, but to gain that we must
also have t * 0:4 to avoid heating. For y > 1 we can go to
lower t values but we lose cooling power because of the
1=y factor and because of the dip in the curves.

Consider d � 10 nm,M � 1011 which is perhaps within
practical reach. The value t � 0:4 (TF � 35 mK and x �
0:2%) implies y � 0:2 and the cooling would be on the

order of a 50 �W in this ballistic-flow waveguide case.
Such a result would be quite a remarkable cooling rate, but
the assumption of perfectly smooth walls is optimistic.
However, the inevitable coating of the pore walls by a
couple of layers of solid 4He will enhance the smoothness.

It perhaps seems more likely that the walls of the chan-
nel would cause scattering, including backscattering, inter-
band transitions, etc. Thus we consider next a simple wall-
limited diffusion or Knudsen flow model. Our starting
point is a kinetic equation for the distribution function in
collision-time approximation [11,12]

 v p � rnp � �
1

	

np; (12)

where 	 is the time between collisions with the wall. The
left side can be written as �vpz@n

�0�
p =@�p@�=@z, where

n�0�p is the local equilibrium distribution function and 
np is
the correction to local equilibrium. The gradient in chemi-
cal potential @�=@z is proportional to the gradient in
density. A much more rigorous approach to such a kinetic
equation is described in Ref. [13]. We consider again the
case of a very narrow channel containing banding. We
solve for 
np and use it to compute, say, the particle flux as

 JN �
2

d2h

X
n

Z �1
�1

dpz
pz
m

np: (13)

From Eq. (1) the cooling power is found to be

 CV
dT
dt
� �

�
2A

d2h�2

�
pK; (14)

where we have introduced the same prefactor as in the
waveguide case so that

 pK � d
d�
dz

�
t

yh�ni

�
1=2X

n

�G3=2��n� � �nG1=2��n�	; (15)

with �n � �� y�n=t. In this equation the collision time 	
is written in terms of the transverse velocities in a channel.
That is, we write 	� d=�2 �v� with �v �

������������������
2h�ni=m

p
, where

 h�ni�
X
n
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Z �1
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dpzn
�0�
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�X
n

Z �1
�1

dpzn
�0�
p

�
�1
: (16)

If we divide this quantity by the lowest band edge, then we
have h�ni=�0 � h�ni used in Eq. (15).

We have to evaluate the derivative d�=dz. What we
mean by this quantity is d�=dz � �d�=dn��dn=dz� since
it is the gradient in density n that drives the flow. We can
find this by taking the derivative of the self-consistent
expression, Eq. (6). In that equation t depends on n because
�F does. We find
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3n

F1=2

tG1=2
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�

4

9
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1

L
�

4

9
�

1

L
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where in the middle form we have taken the density
gradient as n=L with L the length of a channel. What we
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FIG. 2. Reduced waveguide cooling power as a function of
temperature parameter t for various band-edge y values for a
square cross section. Because of the multiplicative factor y all
curves collapse onto the same classical limit curve at large t.
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compute then is

 pK�
4

9

d
L
�
�

t
yh�ni

�
1=2X

n

�G3=2��n��&nG1=2��n�	: (18)

We again plot the product, ypK. The results are shown in
Fig. 3; note that the ratio d=L is not included in the plots.
The curves differ from those of the waveguide in a several
ways. The curves are always positive, i.e., represent cool-
ing, and the y � 1 degenerate case diverges (the T2 in the
prefactor cures that). We have checked the numerical
calculations by doing various limiting relations analyti-
cally. For example, the continuum (small y) case in the
limit t! 0 is pK ! 2:41d=Ly.

As in the waveguide case, small y gives amplified cool-
ing. Indeed, for M � 1011 holes, y � 0:1 gives pKL=d �
1:6=y � 16. Again, consider d � 10 nm. The cooling
power is 13 �W
 16d=L � 208d=L �W. A membrane
width of L � 1 �m gives a cooling of just 2:1 �W. By
Eq. (11) we have t � 0:18 with the y value chosen or TF �
83 mK and x � 0:5%. This cooling power might be useful
if the width L used is not too optimistic. The cooling would
be enhanced if a largerM value were available. For small y
values the continuous degenerate limit gives an upper limit
on the cooling power within these conditions. We have

 pK & 13
2:4
y
d
L
�W �

31:2
y

d
L
�W: (19)

In summary, we have examined here the physics of
particle flow through narrow pores and estimated the pos-
sibility of cooling by this method and have found some
potential for success. As nanotechnology improves, the
possibilities may increase. A very smooth-walled channel
that would provide waveguide type flow would give the

greatest cooling. The more probable situation of Knudsen
flow, while providing cooling over all parameter ranges,
has the factor d=L reducing the cooling power. However,
even that circumstance does not make it impossible. The
numerical results give hope that this approach can lead to
an add-on device to extend the range of a dilution refrig-
erator. Experiments are being planned to test the potential
of the method [14]. While we have considered the possi-
bility of a practical application of nanopores here, experi-
ments of this kind also provide interesting physics, namely,
detecting quantum size effects in the narrow channels and
the resultant restriction of states as already seen experi-
mentally [2,3].
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FIG. 3. Reduced Knudsen cooling power as a function of
temperature parameter t for various y values for a square cross
section. The factor of d=L in the overall cooling power is not
included here.
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