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The form and stability of quantum vortices in Bose-Einstein condensates with attractive atomic
interactions is elucidated. They appear as ring bright solitons, and are a generalization of the Townes
soliton to nonzero winding number m. An infinite sequence of radially excited stationary states appear for
each value of m, which are characterized by concentric matter-wave rings separated by nodes, in contrast
to repulsive condensates, where no such set of states exists. It is shown that robustly stable as well as
unstable regimes may be achieved in confined geometries, thereby suggesting that vortices and their radial
excited states can be observed in experiments on attractive condensates in two dimensions.
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The study of vortices has a long and illustrious scientific
history reaching back to Helmholtz and Lord Kelvin in the
19th century [1]. Vortices associated with quantized circu-
lation are a central feature of superfluidity [2]. Singly [3,4]
and multiply quantized [5] vortices have been observed in
Bose-Einstein condensates (BECs) with repulsive atomic
interactions. Complex vortex structures have been shown
to be stable in repulsive BEC’s, including vortex dipoles
[6,7] and vortex rings [8]. The nonlinear Schrödinger
equation (NLSE), which provides an excellent description
of BECs at the mean-field level [9], supports vortex solu-
tions, which have been studied extensively in the case of
repulsive atomic interactions [10]. The main goal of this
Letter is to clarify the meaning and nature of single vorti-
ces and their excited states in BECs with attractive inter-
actions, and thus encourage experimental exploration of
stable and unstable two-dimensional (2D) BECs.

Solutions to the NLSE with attractive, or focusing non-
linearity, in contrast to repulsive, or defocusing nonlinear-
ity, are unstable in free space in three dimensions (3D) and
are stable in one dimension (1D) [11]. The imposition of an
external potential in 3D can produce a long-lived meta-
stable regime [12,13]. In the metastable and unstable re-
gimes, growth and collapse cycles [14] and implosion [15]
have been studied in 3D. In the stable regime, bright soliton
propagation [16] and interactions [17] in a waveguide have
been investigated in 1D [18].

The critical dimensionality for the NLSE is 2D [11,20].
We will show that quantum vortices and their radially
excited states can be made robustly stable in confined,
attractive 2D condensates and are a generalization of the
Townes soliton [21] to nonzero winding number m. The
Townes soliton is fundamental to understanding the self-
similar collapse of solutions to the 2D NLSE [22]. Its
generalization to winding number jmj � 1 has been
studied in the context of optics, where such solutions are
called ‘‘ring-profile solitary waves’’ or ‘‘spinning bright
solitons’’ [23]. This is in fact the attractive analog of the
well-known single-vortex solution in repulsive conden-

sates [2], as we will show. An example contrasting the
form of vortices in attractive and repulsive BECs is illus-
trated in Fig. 1(a) and 1(b).

In previous studies of quantum vortices in condensed
matter [2] and optical systems [23] with attractive nonline-
arity, the phase variation derived wholly from circulation
of matter about the central vortex core. In this work, we
investigate the most general type of single-vortex station-
ary solutions in attractive BECs for which the order pa-
rameter also alternates sign along radial lines. For each
winding number m, we find a denumerably infinite set of
radially excited states characterized by the successive for-
mation of nodes at r � 1. An example of such an excited
state is illustrated in Fig. 1(c). In contrast, Fig. 1(d) shows
how extremely different is the repulsive case.
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FIG. 1. A quantum vortex of winding number m � 1 in free
space: (a) attractive case; (b) repulsive case. A radially excited
state: (c) the first excited state in the attractive case; (d) in the
repulsive case, a radially excited state requires an infinite num-
ber of nodes and asymptotically resembles the Coulomb function
[26]. The radial dependence of the order parameter of an
infinitely extended condensate is depicted. Note that all axes
are dimensionless.
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Consider an order parameter of the form

  �r;�; t� � fm�r� exp�im�� exp��i�t=@� exp�i�0�; (1)

which solves the 2D NLSE

 ���@2=2M�r2
r;� � g2Dj j2 � V�r�� � i@@t ; (2)

with V�r� a central potential in two dimensions, m the
winding number, M the atomic mass, g2D 	

�4�@2as=M�
����������������������
M!z=2�@

p
the 2D atomic interaction

strength, as < 0 the s-wave scattering length, and � the
chemical potential or eigenvalue. In Eq. (2) it was assumed
that the BEC remains in the ground state in a harmonic trap

of angular frequency !z in the z direction [24], so that r 	����������������
x2 � y2

p
. Then, taking �0 � 0 and defining �m��� 	�����������������

jg2D=�j
p

fm�r�, � 	 �
��������������
2Mj�j

p
=@�r, one obtains a rescaled

2D NLSE of the form

 �00m��
�1�0m�m

2��2�m��
3
m�V����m����m�0;

(3)

where �� � sgn��� � 
1. The solutions to this nonlinear
second order ordinary differential equation describe quan-
tum vortices and their radially excited states in an attractive
BEC in an external potential V���. Examples for�� � �1
and V � 0 are shown in Figs. 1(a) and 1(c).

The form of the radial wave function �m can be obtained
from Eq. (3) by numerical shooting methods [25]. This
requires the initial conditions �m��0�, �0m��0�, which can
be obtained via a power series around � � 0:

 �m��� �
X1

j�0

aj�2j�m; (4)

where the aj are coefficients. Note that �m��� ! a0�m as
�! 0. Upon substitution into Eq. (3) and solution of the
resulting simultaneous equations, one finds that all coef-
ficients aj for j � 0 can be expressed as a polynomial in
powers of a0. Thus the power series shows that a0, the
coefficient of the first nonzero term in the series, together
with the winding number m, is sufficient to determine the
entire solution. Note that we take a0 � 0 and m � 0;
solutions identical in form exist for a0 < 0 and/or m � 0.

We first consider the case of no external potential,
V��� � 0. By following the form of the wave function as
a function of a0, one observes its entire development. The
case of m � 1 and �� � �1 is illustrated in Fig. 2. For
very small a0, the linear, divergent Bessel function solution
Km��� is recovered for small �m���. However, the non-
linearity regulates the divergence as �m becomes on the
order of unity. It subsequently oscillates around unity, with
the oscillations damping away as �! 1 [Fig. 2(a)]. As a0

approaches a critical value avortex
0 , the oscillations are

pushed out towards � � 1 and a localized central peak
appears in the wave function near the origin [Fig. 2(b)]. For
a0 � avortex

0 precisely [26], a node forms at � � 1 and a
quantum vortex is obtained. As a0 is increased, the node

moves inwards and oscillations resume beyond it
[Fig. 2(c)]. To move the oscillations towards infinity again,
one must increase a0 towards a second critical value
[Fig. 2(d)]. When this value is reached precisely, one
obtains the first excited state, with no oscillations past
the first node, and a second node appears at � � 1. In
this way one can construct an infinite set of excited states
by increasing a0 to successive critical points. These critical
points are always characterized by the formation of an
additional node at � � 1.

The appearance of a denumerably infinite set of critical
points is in strong contrast to the case of a vortex in a
repulsive condensate. As we have shown elsewhere [26],
for a repulsive BEC there is only one critical value of a0,
i.e., avortex

0 . Larger values of a0 result in an infinite number
of nodes and the wave function asymptotically resembles
the Coulomb function, as illustrated in Fig. 1(d). We called
these ring solitons, in contrast to vortex solutions, as they
have a different analytic structure and asymptotic behavior.
Thus, in an infinitely extended system, vortices in repulsive
condensates cannot be radially excited in a stationary way,
whereas in attractive condensates they have a denumerably
infinite set of excited states. We note that, for positive
chemical potential, i.e., �� � �1, one can find ring sol-
itons in attractive condensates which have a similar form to
those of repulsive condensates.

For winding number m � 0 and a0 � 2:206 200 86 . . . ,
one obtains the Townes soliton. Increasing a0 results in the
formation of successive nodes at � � 1, just as form � 1,
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FIG. 2 (color online). The development of excited states of a
quantum vortex in an attractive BEC. (a) For small a0, no
quantum vortex is formed. (b) As a0 ! avortex

0 from below (solid
black curve) or above (dashed red curve), the oscillations are
pushed out towards � � 1. For a0 � avortex

0 a node appears at
� � 1, and a true vortex appears. (c) For still larger a0, the node
moves inwards. (d) As a0 approaches a second critical value, the
oscillations are again pushed out, until a second node appears at
� � 1. In this way one obtains the first excited state. An infinite
sequence of excited states can be constructed in this way. Note
that the case of an infinitely extended condensate of winding
number m � 1 is depicted and all axes are dimensionless.
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i.e., one finds the radially excited states of the Townes
soliton. In this special case, it has been formally proven
that an infinite set of radially excited states corresponding
to the formation of nodes exists, and that the Townes
soliton is the unique ‘‘ground state’’ in that sequence
[11]. It is in this sense that the vortex solutions we have
described are generalizations of the Townes soliton to
nonzero winding number. All such solutions wherein a
node has formed at infinity are normalizable.

In order to study attractive BECs in experiments, it is
vital to consider stability properties in confined systems.
The special stability properties of two dimensions can be
illustrated by a simple variational study. Consider the
variational ansatz

  �r;�; t� � Arme�r
2=2r2

0eim�e�i�t=@; (5)

where r0 and A are variational parameters, subject to the
power law potential V�r� � V0r

j, j > 0. Integrating Eq. (2)
over  ��r; �; t�, one finds simultaneous equations for the
chemical potential and g2D. Then, using the normalizationR
d2rj j2 � N to eliminate A, where N is the total number

of atoms, one obtains ��N � parametrically in r0:

 � �
�@2��m� 2�

2Mr2
0��m� 2�

�
V0�1� j���m�

j
2� 1�rj0

��m� 2�
; (6)

 N �
��m� 2�

��1=2��m� 1
2�
�
MV0j��m�

j
2� 1�rj�2

0

��1=2
@

2��m� 1
2�

; (7)

where N 	 MNjg2Dj=2�@2 � 2jasjN
�������������������
M!z=2�

p
@ is the

dimensionless nonlinearity. The solution is radially stable
when the Vakhitov-Kolokolov (VK) criterion [27]
d�=dN � 0 is satisfied. One finds that the VK criterion
always holds for N <N c, where

 N c � 2
����
�
p

��m� 2�=��m� 1=2�: (8)

Equation (8) is independent of both V0 and j, i.e., radial
stability does not depend on the details of any positive
power law potential. In the limit in which j! 1,
one obtains the same result for a cylindrical hard-wall
potential. When N �N c, the total energy E� � �
N��� �g2D=2�

R
d2rj j4� ! �1 as r0 ! 0, meaning

that the wave function is unstable and implodes. When
N <N c, the energy has a global minimum at some finite
r0. In contrast, in three dimensions, the minimum, when it
exists, is always local, so that, at best, one obtains meta-
stability [13,28].

We now consider in detail the most experimentally
relevant case, i.e., j � 2 and V0 � M!2=2, a harmonic
trap. Note that typical trapping frequencies are on the order
of ! � 2�
 100 Hz, which gives a time scale of T 	
2�=! � 10 ms. For no external potential, V�r� � 0, it is
well known that the Townes soliton (m � 0) is radially
unstable, while the quantum vortex of winding number
m � 1 [Fig. 1(a)] is azimuthally unstable. The variational
analysis of Eqs. (5)–(8) suggests that the addition of a

confining potential can stabilize the solutions radially for
general m. However, this simple variational study did not
consider azimuthal stability. Both radial and azimuthal
stability can be determined by linear stability analysis,
i.e., the Boguliubov–de Gennes equations (BDGE) [10],
a standard method which we do not reproduce here, for the
sake of brevity. The case of general m without radial
excitations has been studied previously [29–33]. It was
found that for sufficiently small N the vortex with m � 1
is stable, while for m � 2 the solution is unstable to
quadrupole oscillations, though instability times can be
much greater than T. We can therefore say that for small
N vortices of winding number m � 2 are experimentally
stable.

Applying the BDGE’s, we studied the azimuthal and
radial stability of the radially excited states of the Townes
soliton. The results for the first excited state, which has a
matter-wave ring separated from a soliton core by a radial
node, are illustrated in Figs. 3(a) and 3(b). The winding
number of each Boguliubov mode is denoted by q. The
frequency of each mode is denoted by �q with instability
time tq 	 2�=Im��q�. From Fig. 3(b), it is apparent that a
radial instability (q � 0) occurs for all N , since
Im��0� � 0. However, one finds experimental stability
for small N , since tq=T � 1. Other modes become un-
stable at higher N , starting with the dipole, q � 1. For
large N the dominant instability occurs in the quadrupole
mode.

In Figs. 3(c) and 3(d) is shown the same stability analy-
sis for the first excited state of them � 1 vortex, which has
two concentric matter-wave rings separated by a radial
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FIG. 3 (color online). Stable regimes of quantum vortices in
confined attractive BECs. Shown are the chemical potential
spectra and linear instability frequencies as a function of the
nonlinearity for (a)–(b) the first excited state of the Townes
soliton, and (c)–(d) the first excited state of a singly quantized
vortex m � 1, all in a harmonic potential. In (b),(d) the winding
number of the instability mode is denoted by q and the instability
time given by 2�=Im��q�. Note that all axes are scaled to
harmonic oscillator units.
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node. Unlike the excited states of the Townes soliton, here
the solution is linearly stable for N < 5:5. The solution
continues to be experimentally stable up to N � 10,
although a dipole instability occurs for t1 � T. For large
N the dominant instability is radial. For the radially
excited states of both the Townes soliton and the m � 1
vortex, the VK criterion, which has never been proven
formally, fails, as is apparent in Figs. 3(a) and 3(c). For
winding numberm � 2 we find that the first excited state is
most unstable to quadrupolar excitations, although for
N & 10 it is experimentally stable.

In experiments, one may access the stable regime of
quantum vortices and their excited states via a Feshbach
resonance, which allows for extremely small scattering
lengths on the order of the Bohr radius; this technique
was used to successfully create bright solitons [16,17].
Vortices may be created by rotating the condensate; alter-
natively, one may start with a single vortex in a repulsive
condensate and adiabatically switch the scattering length
from positive to negative. Excited states may be made by
phase imprinting through a pinhole mask, by passing a
tightly focused laser pulse through the condensate center,
or by utilizing a doughnut mode of a laser. It seems likely
that the most useful approach will use these methods to
first create dark ring solitons [34] on a repulsive condensate
with a central vortex [26], and then tuning the scattering
length to be negative. An important point in the assumption
of the two-dimensional regime is that, in order for our
stability criterion to be valid, the condensate must remain
oblate, so that excitations in z do not occur; this may be
achieved by a correct choice of experimental parameters.

In conclusion, we have shown that quantum vortices and
their radially excited states in attractive BECs can be
created stably in confined systems. We contrasted vortices
in attractive BECs, which can be thought of as ring bright
solitons or spinning Townes solitons, to their counterparts
in repulsive BECs. We showed that there exists a denumer-
ably infinite set of excited states which, in an infinitely
extended condensate, correspond to the creation of nodes
at r � 1. In a harmonic trap, these are stable or experi-
mentally stable for sufficiently small nonlinearity. In con-
trast to 3D, there is no metastability. We note that, in an
optics context, vortices, or ‘‘spinning bright solitons,’’ can
also be stablized by competing nonlinearities, i.e., a defo-
cusing quintic nonlinearity with a focusing cubic nonline-
arity [35].
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