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Level Density of a Fermi Gas: Average Growth and Fluctuations
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We compute the level density of a two-component Fermi gas as a function of the number of particles,
angular momentum, and excitation energy. The result includes smooth low-energy corrections to the
leading Bethe term (connected to a generalization of the partition problem and Hardy-Ramanujan
formula) plus oscillatory corrections that describe shell effects. When applied to nuclear level densities,
the theory provides a unified formulation valid from low-lying states up to levels entering the continuum.
The comparison with experimental data from neutron resonances gives excellent results.
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Many physical properties of interacting Fermi gases
depend on the number of available states at a given energy,
like, for instance, the optical and electrical response of
solids, or the reaction rates in nuclear processes. The most
common framework to compute the many-body (MB)
density of states (DOS) is a mean-field approximation,
where each (quasi)particle moves independently in an
average self-consistent potential. In this case, the energy
of the Fermi gas is expressed as the sum of the occupied
single-particle (SP) energies. The computation of the MB
DOS is thus reduced to a combinatorial problem: to count
the different ways into which the energy can be distributed
among the particles. A first answer to this question was
given by Bethe [1], who showed that at high excitation
energies O (compared to the SP spacing at Fermi energy
€rp) and for two types of fermions (protons and neutrons),
the MB density grows like pyp(Q) ~ exp(2/aQ)/Q5/4.
The Fermi gas parameter a = 72 p(€p)/6 depends only on
the average SP DOS at e, p(e€g).

In practice, the parameter a is often used as a fitting
parameter. For a given excitation energy Q and particle
number A, a(Q, A) is extracted from the available experi-
mental data. In this way, important deviations from the
independent particle model predictions are observed.
Though there are certainly effects that are beyond that
model, our purpose here is to show that a detailed treatment
is able to describe features of individual systems with good
accuracy, therefore providing a solid theoretical basis for
extrapolations to unknown regions and for improvements.
Generalizing the results obtained in Ref. [2] to a two-
component system of given angular momentum, we show
that Bethe’s result can be viewed as the first (smooth) term
of an expansion. The corrections to that term do not enter
as corrections of the a parameter (as was often assumed in
the past), but simply as additional terms in the exponential.
A first series of terms are smooth in A and Q, and provide
higher-order (in inverse powers of the excitation energy)
corrections. Keeping only the first correction generates a
uniform expression, which cancels the divergence produce
by the Q~5/* term at low energies, and therefore make

0031-9007/06/97(1)/010401(4)

010401-1

PACS numbers: 03.75.Ss, 21.10.Ma, 24.60.—k

unnecessary the use of composite models (a la Gilbert-
Cameron). On top of the smooth contributions are oscil-
latory terms, that describe density fluctuations as A varies.
These are shell effects, which turn out to be related to the
fluctuations of the total energy of the system. A detailed
description of these fluctuations and of the relevant energy
scales is provided. Finally, a comparison of the results with
the nuclear level density at neutron threshold is made. With
a few adjustable parameters, a very good overall agreement
is obtained, with a relative error = 10% for the logarithm
of the density of the 295 nuclei analyzed.

From a theoretical point of view, Ref. [2] and the present
work may be viewed as a generalization to MB systems of
the theory developed to describe the SP DOS [3-5].
Previous works have considered the high-energy
(Mawell-Boltzmann) limit [6], while here we concentrate
on the regime of a large number of particles and Q < €.

The DOS at energy E of a system composed of Z
protons, N neutrons, and with projection M of the angular
momentum on some given axis is defined as

pus(E, N, Z, M) = > 8(E — E")8(N — A})8(Z — Ap)
X 8(M — MY). (1

The index v denotes all the possible neutron and proton SP
configurations (of arbitrary number of particles), A} =
>y, are the neutron and proton number of particles,
respectively (n} ; = 0, 1 are the corresponding occupation
numbers of the ith SP state, and A = N or P); E¥ =
dadiny€xi and M7 =%, % n}y.m,; are the energy
and angular momentum projection, where €,; and m,;
denote the SP energies and angular momentum projections,
respectively.

The conservation of the angular momentum projection is
introduced in order to deal with only a subset of states,
those with given total angular momentum J. A standard
treatment [7,8] of this degree of freedom leads to a DOS of
angular momentum J of the form
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where pyp(0, N, Z) is the total MB DOS, Q = E — E, is
the excitation energy measured with respect to the ground-
state energy of the system, and o is the spin cutoff
parameter.

For an arbitrary SP spectrum the computation of the
density of excited states is a difficult combinatorial prob-
lem for which no exact solution exists. There is, however, a
particular case that can be worked out explicitly: when the
SP spectrum consists of equidistant levels separated by &
(we assume, for simplicity, that the neutron and proton
spacings are equal). The MB excitation energies are then
given by the sum of two integers corresponding to the total
energy of each of the components, Q = (j + k)6 = K§.
Each MB state characterized by an integer K has a non-
trivial degeneracy. The computation of the degeneracy
reduces to the computation of the number of ways into
which the total energy may be distributed among the two
components, and of the different ways the partial energy of
each component can be distributed among its elements.
This leads us to compute the value of the function p,(K) =
Zle p(j)p(K — j), where p(j) is the partition of j (the
number of ways into which the integer j can be decom-
posed as a sum of integers). We are assuming here, to avoid
finite size effects, that the excitation energy is small com-
pared to the Fermi energy of each component. Based on the
work of Hardy and Ramanujan, an exact expression (writ-
ten as a convergent series) for p(j) was obtained by
Rademacher [9]. We have adapted their method (i.e., the
circle method, cf. Ref. [10]) to obtain an exact formula for
p»(K). Putting back the appropriate units, the MB density
can be expressed in terms of p, as pyp/p = 24 p,(K =
pQ/2), where p = pp + py = 2/8 is the total (proton +
neutrons) SP average density. Then, expressing the exact
result as an expansion in terms of pQ valid in the range
p ! < Q< N8, Z§, we obtain

pme(Q, N, Z,J) =

6]/4
—— €
12(50)

where the “entropy” S = S, of the equidistant spectrum
is given by

pme(O, N, 2)/p = S (3)

0
@)

plus O((5Q)~%/?) corrections that can be computed but are
not given here. The prefactor in Eq. (3) and the first term of
the expansion (4) reproduce Bethe’s formula [1]. The addi-
tional terms provide further smooth corrections of higher
order in inverse powers of the excitation energy. Though
Eq. (4) represents an asymptotic expansion, we find that an
accurate uniform approximation is obtained by keeping
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only up to the 1/4/pQ term that destroys, when Q — 0,
the divergence produced by the (5Q)~%* in the prefactor.
It is also interesting to note that the correct coefficients of
the correction terms in (4) are obtained through the expan-
sion of the exact result, whereas a saddle point approxi-
mation of the sum involved in p,(K) leads to wrong
coefficients.

The previous expression describes in detail the MB DOS
for a SP spectrum made of equidistant levels. However, it is
clearly unphysical in most situations. A generic SP spec-
trum contains fluctuations, which are manifested at the
scale of the average distance between levels, but also on
much larger scales (see Ref. [11] for a review). What is
missing in Eq. (3) are the fluctuations in the MB density
induced by the SP fluctuations. In this respect, one may
consider Eq. (3) as the MB analog of the Weyl or Wigner-
Kirkwood expansions.

It remains for us to compute the MB level density for an
arbitrary SP spectrum, including fluctuations. The way to
do it was shown, for a single-component gas, in Ref. [2].
The method uses a saddle point approximation of the
inverse Laplace transform of the MB density. We have
adapted that calculation, following similar lines to treat
Eq. (1), which includes two components and angular mo-
mentum conservation. The result may be written under the
form of Egs. (2) and (3), but with the entropy in the latter
equation given by

S =8¢+ %[E’W, Z,0)— &N, ZT)] 5)

The parameter 7 is the temperature, connected to the
excitation energy (@ through the usual relation Q =
mpT?/6 = aT? EN,ZT) =Y, [dep(e)ef(e pu, T)
is the fluctuating part of the energy of the system at
temperature 7 and chemical potential u ~ ep fixed, ne-
glecting temperature variations, by the particle-number
conditions N ~Z = [ dep,(€). The function p,(e) =
> ;j6(e — €, ;) is the SP density of the component A, and
p(e) = p,(e) — p,(e) its fluctuating part. E(N, Z, 0) is
thus the fluctuating part of the ground-state energy of the
system. Finally, S¢q in Eq. (5) is given by Eq. (4), with p
the total average SP density of the system at Fermi energy.
In fact, for an arbitrary spectrum the saddle point technique
does not allow to derive the terms of order (5Q)~'/2 and
higher in . The corrections obtained from an equidistant
spectrum are thus conjectured to provide a good approxi-
mation to the corrections of the smooth part of an arbitrary
system, but the validity of this statement has to be con-
firmed. An explicit numerical verification of its validity for
a two-dimensional one-component system was done in
Ref. [2].

The function E(N, Z, T) presents oscillations when N or
Z are varied, in contrast to the more gentle variations as a
function of T (a detailed description of the fluctuations and
of their T dependence is given below). The MB level
density contains now two types of terms: some that vary
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smoothly, and others that fluctuate as the number of parti-
cles changes. The result presented above contains the
dominant smooth and oscillatory terms. In the derivation
of Egs. (2), (3), and (5), we have neglected other terms [for
instance, the chemical potentials and 7 have small correc-
tions that depend on J, and thus strictly speaking the
factorization (2) of the angular momentum is not exact,
etc.]. A detailed account of the derivation will be given
elsewhere.

It is remarkable that the MB level density at excitation
energy O depends explicitly on the ground-state energy
fluctuations E(N, Z, 0). A convenient way to analyze the
behavior of the fluctuating part of the entropy S=
[E(N, Z,0) — EN, Z, T)]/T is through a semiclassical the-
ory. The result is an expression for S written as a sum over
all the classical periodic orbits of the mean field potential.
The main conclusions that can be drawn from that expres-
sion are now listed. To be specific, we consider the par-
ticular case of an atomic nucleus of Z protons and N
neutrons: (a) as the mass number A = Z + N varies at
fixed excitation energy Q, S presents oscillations of char-
acteristic period 8A =~ (/3)A%3, which are independent
of Q; (b) when Q varies at fixed particle number A, S does
not present similar oscillations, but rather gentle variations;
(c) the typical amplitude oz of S at given (Q, A) depends
on the dynamical properties of the classical dynamics
(integrable or chaotic); (d) since the mean field dynamics
of most nuclei is well approximated by a regular motion
[11], then the behavior of the typical amplitude of S is
given, to a first approximation, by those of a regular
dynamics, that we now detail; (e) using the definition of
the temperature T =./Q/a with a=7p/6 =
A/15 MeV~! [12], we find that there is only one relevant
temperature scale in the variation of oz with T, given by
T, =~ 4/A'3 MeV (directly related to the system size—
see [2]); for convenience we also introduce T5 =
(27%p) ' = 1.3/A MeV (the temperature associated
with the SP mean level spacing), and g =T,/Ts =
3A%/3; (f) at low temperatures, oz =~ \/T/Ts; the typical
amplitude of shell effects in the MB DOS therefore in-
creases from 0 at 7T =0 up to ~,/g at T ~T,; (g) at
temperatures of order 7. the amplitude is maximal, and
starts to decrease for T > T; (h) in the limit 7 > T, the
typical amplitude tends to zero as oz = \/%TC /T using
the previous values of T, and g this gives oz =
24/2/T MeV; we thus predict a slow power-law decay of
the amplitude of shell effects at high temperatures.

We now turn to a direct application of the previous
results to experimental data. Though it will be important
to make a systematic analysis of the validity of Egs. (2),
(3), and (5), and of their predictions at different energies
and mass numbers, we restrict ourselves here to a com-
parison with slow neutron resonances, which have been
experimentally studied for a large number of nuclei [13].
The excitation energies of neutron resonances coincide

with the neutron binding energies, Q = Q, = S, (N, Z),
whose values are in the range 6—8 MeV for most nuclei.
This corresponds to a temperature T, =~ 8/+/A MeV.
According to the previous results, the typical amplitude
of the fluctuations depends on temperature, with a maxi-
mum at T = T.. At neutron resonances the ratio T,,/T, =
2/A'Y®. From A = 30 to A = 250, this ratio varies from
1.13 to 0.8. We thus find that at excitation energies Q =
Q,, the temperature is very close to T.; shell effects are
maximal. We expect a typical value of S(Q, N, Z) very
close to its maximum ~ /g = 3A3 (this varies from 5.4
to 11 in the previous range of A). In contrast, in the same
particle-number range the first correcting term [propor-
tional to (pQ)~'/?] in the smooth expansion (4) varies
from 0.32 to 0.11. That term, and the following ones in
the expansion, can thus be neglected at Q = Q,.

To make a comparison with experiments we need the
different quantities involved in the theoretical expressions.
The quantity (EN, Z, T,) is, semiclassically, written as a
sum over the periodic orbits p (and repetitions) of the
mean field potential [11]. The analysis of the temperature
dependence of that sum and of the main contributing orbits
leads to the approximation E(N,Z T,) = k,E(N, Z,0),
where k, is the average over the shortest periodic orbits
p of the function «(x,) = x,/sinh(x,), where x, =
3m¢,A'’T,/(4€r) and €, is the length of the periodic
orbit p measured in units of the nuclear radius (notice
the mass number and temperature dependence of x,,). For
each nucleus, A and 7, are given and the average k, =
k(N, Z,T,) is computed. In practice, the average is esti-
mated using the shortest periodic orbits of a spherical
cavity of radius R = 1.24'/3 fm.

The expression of the entropy S in Eq. (3) takes now the
form

S(0,, N, Z) = 2.JaQ, + (1 — REN, Z,0)/T,. (6)

Finally, a, Q,,, and &N, Z,0) are required. One possibility
is to compute them from a particular model. In our case,
however, in order to avoid model-dependent features and to
make a direct test of our predictions, we prefer to extract as
much information as possible from experimental data. For
each nucleus, the excitation energy at neutron threshold
0 =0, = S,(N, Z) is taken from the experimental value

of S,(N,Z), and T,(N,Z)=./Q,/a. Analogously,
E(N, Z,0) can be obtained from the experimental value
of the ground-state energy. It corresponds to the fluctuating
part of the nuclear binding energy. Thus, nuclear effects
that may depend on A, like deformations, are automatically
incorporated. This quantity is computed by subtracting
from the 1995 Audi-Wapstra compilation [14] the liquid
drop  expression & = a,A — a,A?? — a. Z2/A' —
a,(N — Z)?/A, using the parameters (from Ref. [15]) a,, =
15.67, a, = 17.23, a4, = 23.29, and a, = 0.714 (all in
MeV; we have moreover excluded the pairing term). This
parametrization produces a fluctuating part whose average
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FIG. 1. Entropy S as a function of the mass number A for
nuclear level densities at neutron threshold. (a) experimental
values; (b) theoretical prediction; (c) relative error.

(over A) (E(N, Z, 0)), = 0. However, the determination of
the average of the fluctuating part is a delicate question that
deserves a careful discussion. Because of the discrete
variation of the chemical potential as the mass number
varies, one can verify that generically (E(N, Z, 0)), is non-
zero. We have therefore added to the fluctuating part a term
bA + ¢, where b and c are two constants. Equation (6) thus
depends on three constants, a, b, and c, that we fix by
minimizing the root mean square error with respect to the
experimental value of the density, S, [obtained by com-
puting S from Egs. (2) and (3) when pyp(Q, N, Z, J) is
the experimental DOS, J the ground-state angular momen-
tum and o2 = 0.15aA%3T, [13]]. The result is a =
A/10.42 MeV™!, b = —0.019 MeV and ¢ = 7.9 MeV.
The comparison is made in Fig. 1. The experimental values
Sexp shown on the top part are to be compared with the
“theoretical’” entropies plotted in the middle part. A clear
overall agreement is observed. For most nuclei, the relative
error in the lower panel is smaller than 10%, with some
remaining structure as a function of A, and larger devia-
tions for closed shells (we suspect that this is due to our
very schematic estimate of &,, and/or of o, cf. Ref. [16]).

The precision of the present calculation, with only three
adjusted parameters, is comparable to the best fits obtained
nowadays. We can, in fact, make the comparison more
precise by noticing that Eq. (6) can be approximated, using
an effective value of a, by S(Q,, N, Z) = 2./a0,,, where
ag = a[l + EWN,Z 0)(1 — k)/Q,]. Under this form,
Eq. (6) is quite similar to one of the best phenomenological
formulas studied so far, proposed by Ignatyuk and collab-
orators [13,17].

To conclude, we have derived an explicit formula for the
MB DOS of a two component Fermi gas of fixed angular

momentum. The results were applied to the particular case
of nuclear level densities, where precise predictions for the
smooth dependence and shell fluctuations as a function of
excitation energy and mass number were made. Different
nuclear effects, like deformations, were explicitly taken
into account through the function E(N, Z, 0). Good agree-
ment between theory and experiment in the region of
neutron resonances was found. Although it was derived
within an independent particle model, the comparison with
experiments shows that the final result is probably of more
general validity and includes, through the energy fluctua-
tions &, effects like pairing. Going to high excitation en-
ergies, the main prediction is the decay of shell effects
when Q = Q, (with a power-law tail). However, that
prediction is valid for closed systems. Before proceeding
in that direction, the theory should be improved to include
finite size effects (e.g. a finite number of nucleons) as well
as the influence of the continuum.
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