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Dynamical Spin Structure Factor for the Anisotropic Spin-1/2 Heisenberg Chain
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The longitudinal spin structure factor for the XXZ-chain at small wave vector ¢ is obtained using Bethe
ansatz, field theory methods, and the density matrix renormalization group. It consists of a peak with a
peculiar, non-Lorentzian shape and a high-frequency tail. We show that the width of the peak is
proportional to g2 for finite magnetic field compared to ¢> for a zero field. For the tail we derive an
analytic formula without any adjustable parameters and demonstrate that the integrability of the model

directly affects the line shape.
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One of the seminal models in the field of strong corre-
lation effects is the antiferromagnetic spin-1/2 XXZ chain

N
H=J S8, + 88, + ASiST,, = hs5] (1)
j=1

where J >0 is the coupling constant and 4 a magnetic
field. The parameter A describes an exchange anisotropy
and the model is critical for —1 < A = 1. Recently, much
interest has focused on understanding its dynamics, in
particular, the spin [1] and the heat conductivity [2], both
at wave vector ¢ = 0. A related important question refers
to dynamical correlation functions at small but nonzero g,
in particular, the dynamical spin structure factors
SHE(g, ), w = x, ¥, 7 [3]. These quantities are in principle
directly accessible by inelastic neutron scattering.
Furthermore, they are important to resolve the question
of ballistic versus diffusive transport raised by recent ex-
periments [4] and would also be useful for studying
Coulomb drag for two quantum wires [5].

In this Letter we study the line shape of the longitudinal
structure factor $%(g, w) at zero temperature in the limit of
small g. Our main results can be summarized as follows:
by calculating the form factors F(g, w) = (0|S%|a) (here
|0) is the ground state and |a) an excited state) for finite
chains based on a numerical evaluation of exact Bethe
Ansatz (BA) expressions [6,7] we establish that §%(g, w)
consists of a peak with peculiar, non-Lorentzian shape
centered at w ~ vq, where v is the spin-wave velocity,
and a high-frequency tail. We find that |F(g, )| is a
rapidly decreasing function of the number of particles
involved in the excitation. In particular, we find for all A
that the peak is completely dominated by two-particle
(single particle-hole) and the tail by four-particle states
(denoted by 2p and 4p states, respectively). Including up
to eight-particle as well as bound states we verify using
density matrix renormalization group (DMRG) that the
sum rules are fulfilled with high accuracy corroborating
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our numerical results. By solving the BA equations for
small A and infinite system size analytically we show that
the width of the peak scales like ¢ for i # 0. Furthermore,
we calculate the high-frequency tail analytically based on a
parameter-free effective bosonic Hamiltonian. We demon-
strate that our analytical results for the linewidth and the
tail are in excellent agreement with our numerical data.

For a chain of length N the longitudinal dynamical
structure factor is defined by

1 X [t
5%(q, w)zﬁ z 6*111(1*/)]700 dte""’(Sj(t)Sj,(O)}
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Here S = 3 ;S3e™'4/ and |@) is an eigenstate with energy
E, above the ground state energy. For a finite system,
S§%(q, w) at fixed ¢ is a sum of & peaks at the energies of
the eigenstates. In the thermodynamic limit N — oo, the
spectrum is continuous and $%(q, @) becomes a smooth
function of w and ¢. By linearizing the dispersion around
the Fermi points and representing the fermionic operators
in terms of bosonic ones the Hamiltonian (1) at low en-
ergies becomes equivalent to the Luttinger model [8]. For
this free boson model $%(g, ) can be easily calculated
and is given by

S%(gq, w) = Klql6(w — vlql), (3)

where K is the Luttinger parameter. This result is a con-
sequence of Lorentz invariance: a single boson with mo-
mentum |¢g| always carries energy w = vl|g|, leading to a
S-function peak at this level of approximation.

We expect the simple result (3) to be modified in various
ways. First of all, the peak at w ~ vgq should acquire a
finite width y,. The latter can be easily calculated for the
XX point, A = 0, where the model is equivalent to non-
interacting spinless fermions. In this case the only states
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that couple to the ground state via S are those containing a
single particle-hole excitation (2p states). As a result, the
exact S%(g, w) is finite only within the boundaries of the
2p continuum. For i # 0, one finds y, = g*/m for small
g, where m = (Jcoskp)™! is the effective mass at the
Fermi momentum k. For h = 0, m~! — 0 and the width
becomes instead y, = Jg?/8. In both cases the nonzero
linewidth is associated with the band curvature at the Fermi
level and sets a finite lifetime for the bosons in the
Luttinger model. Different attempts to calculate y, for
A # 0 have focused on perturbation theory in the band
curvature terms [9] or in the interaction A [10,11] and
contradictory results were found. All these approaches
have to face the breakdown of perturbation theory near
® ~ vq.

Since perturbative approaches show these divergences,
our discussion about the broadening of the peak is based on
the BA solution. The BA allows us to calculate the energy
of an eigenstate exactly from a system of coupled nonlinear
equations [12]. For A = 0 these equations decouple, the
structure factor is determined by 2p states only, and one
recovers the free fermion solution. For |A| < 1 the most
important excitations are still of the 2p type and one can
obtain the energies of these eigenstates analytically in the
thermodynamic limit by expanding the BA equations in
lowest order in A. For & # 0 (i.e., finite magnetization s =

(8%)) this leads to

2A 2
Yy = 4J<1 = sinkF) coskp sing ~ % 4)

*

for the 2p type excitations. We therefore conclude that the
interaction does not change the scaling of y, compared to
the free fermion case but rather induces a renormalization
of the mass given by m — m* = m/(1 + 2A sinky /). We
have verified our analytical small A result by calculating
the form factors numerically [7]. For all A, we find that
excitations involving more than two particles have negli-
gible spectral weight in the peak region. In Fig. 1 we
therefore show only the form factors for the 2p states
and a typical set of parameters.

The form factors, for different chain lengths, N, collapse
onto a single curve determining the line shape of $%(¢, )
except for a high-frequency tail discussed later. The form
factors are enhanced near the lower threshold w; (g) and
suppressed near the upper threshold wy(g) in contrast to
the almost flat distribution for A = 0. The line shape
agrees qualitatively with the recent result in [13] predicting
a power-law singularity at w;(g) with a ¢- and
A-dependent exponent. The inset of Fig. 1 provides a
numerical confirmation that y, ~ g%, with the correct pre-
factor as predicted in (4) for kr = 27/5. For zero field, the
bounds of the 2p continuum are known analytically [14]
and lead to a scaling y,~¢’ for —1<A=1.
Furthermore, for # =0 and A = 1, an exact result for
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FIG. 1 (color online). Form factors squared for the 2p excita-
tions and different N at A = 0.25, s = —0.1, and g = 27/25.
The inset shows the scaling of the width y,. The points are
obtained by an extrapolation N — oo of the numerical data. The
solid line is the prediction (4), y, = 0.3564°.

the 2p contributions to the structure factor has been de-
rived [15].

Calculating a small number of form factors for finite
chains poses two important questions: (1) for finite chains
S$%(q, w) at small g is dominated by 2p excitations. Is this
still true in the thermodynamic limit? (2) How much of the
spectral weight does the relatively small number of form
factors calculated account for? We can shed some light on
these questions by considering the sum rule I(g) =
@2m) 7! [dwS¥(q, ) = N7'($58%,), where the static
correlation function can be obtained by DMRG. As ex-
ample, we consider again A =025, s= —0.1, g =
27r/25 with N = 200. For this case we have calculated
2200000 form factors including up to 8 p excited states as
well as bound states. Note, however, that this is still small
compared to a total number of states of 22°°, In the DMRG
up to 2400 states were kept and the ordinary two-site
method was utilized but with corrections to the density
matrix to ensure good convergence with periodic boundary
conditions [16]. The typical truncation error was then
~10719 and within the accuracy of the DMRG calculation
(3 parts in 10%) the 2200000 form factors account for
100% of I(g). 99.97% of the spectral weight is concen-
trated in I,(g), the contribution caused by the gN /27 = 8
single particle-hole type excitations at w ~ vg. With in-
creasing N we observe an extremely slow decrease in
I,(g); however, even for a system of 2400 sites, I,(qg) is
only reduced by 0.13% compared to the N = 200 case.
While this large N behavior definitely requires further
investigation it may not be very relevant to experiments,
where effective chain lengths are limited by defects.

Another feature missed in (3) is the small spectral
weight extending up to high frequencies w ~ J. This is
relevant in the context of drag resistance in quantum wires
because of the equivalence of S%(¢g, w) and the density-
density correlation function for spinless fermions [5]. To
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calculate the high-frequency tail we start from the
Luttinger model

H =01 + (5.4) 5)

Here, ¢(x) is a bosonic field and Il(x) its conjugated
momentum  satisfying [¢(x), I1(y)] = id(x — y). The
slowly varying part of the spin operator is expressed as
S5~ JVK/7wd,¢. Note that both v and K depend on A and
h. In the language of the Luttinger model, the spectral
weight at high frequencies is made possible by boson-
boson interactions. Therefore, we add to the model (5)
the following terms

SH (x)=n_[(0,61)* — (3,0 ]+ 0. [(0,01)* 0 Pr
—(9,pr)*0xpr]+ (L [(9:hL)* + (0. 08)*]
+ {1 (0,:01)(9,pp)* + [0, P (9, Hr)
+0,br(8,41)°]+ Acos(4/TK d + k),
(6)

where ¢y ; are the right- and left-moving components of
the bosonic field with ¢ = (¢, — ¢x)//2. They obey the
commutation relations [0, r(x), 0,1 (V)] =
+id,6(x — y). These are the leading irrelevant operators
stemming from band curvature and the interaction part.
The amplitudes 7, {+, {3, and A are functions of A and 4.
For h # 0 the A term (umklapp term) is oscillating and can
therefore be omitted at low energies. Besides, the { terms
have a higher scaling dimension than the 7. terms, so the
latter yield the leading corrections. For 2z = 0, on the other
hand, particle-hole symmetry dictates that . = 0 and we
must consider the ¢ terms as well as the umklapp term. For
v, < 0 — v|g| < J itis safe to use finite order perturba-
tion theory in these irrelevant terms.

In the finite field case the tail is due to the 7, interac-
tion. This allows for intermediate states with one right- and
one left-moving boson, which together can carry small
momentum but high energy w > vlg|. It is convenient
to write the structure factor defined in (2) as S%(q, w) =
—2Im ¥*'(gq, w), where ' = —(K/7)d,¢d.P) is the
retarded spin-spin correlation function. The correction at
lowest order in 7 to the free boson result then reads

(SX(q’ lwn) = [DE?)((']: lwn) + D(LO)(q: lwn)]anL(q’ lwn)

2Kn? )
HRL(% iwn) = - U /fdxdre"(qx’wﬂ)

T

X D (x, )D\(x, 7), (7

where DY) (g, iw,) = (3xbprd brr) = £lal/liw, F
vlq|) are the free boson propagators for the right- and
left-movers, respectively, and Ilg; (g, iw,) is the self-
energy. The tail of $%(g, w) for h # 0 is then given by

_Kkniq* 6(w —vlql)

2

65% (g, w .
7. (g ®) v @ — V2

®)

For i = 0 a connection between the integrability of the
XXZ model and the parameters in the corresponding low-
energy effective theory exists [17]. The integrability is
related to an infinite set of conserved quantities where
the first nontrivial one is the energy current defined by
Jg = [dxjg(x) with 0, jg(x) = i{ H (x), [dyFH (y)] [18].
For the Hamiltonian (6) we find

je= =5 10cb0)* = (0651~ 40 [(0:0)* — (0.:6)"]
+ 253[ax¢L(ax¢R)3 - ax¢R(ax¢L)3] +... (9)

where the neglected terms contain more than four deriva-
tives. Now conservation of the energy current, [J, H] = 0,
implies {3 = 0 [19]. The spectral weight at high frequen-
cies is therefore given by the ;. and A terms only.

The perturbation theory for the {; term is analogous to
the one for the 1, term. Now the incoming left (right)
boson can decay into one left (right) and two right (left)
bosons. This contribution is then given by

K 2

657 (g, w) = ﬁqz((uz —v2¢)0(w — vigl). (10)
For the umklapp term, we calculate the correlations fol-
lowing [20] and find

885 (g, w) = Ag*(0® — v?*¢)* P0(w — vlgl), (11

where A = 872 A2K?(2v)3 8K /T2(4K). We remark that, in
a more general nonintegrable model, the {3 term in Eq. (6)
leads to an additional contribution to the tail which de-
creases with energy and becomes large near w ~ vq. The
increasing tail found in the integrable case implies a non-
monotonic behavior of $%%(g, w). Equations (8), (10), and
(11) are valid in the thermodynamic limit. We can extend
these results for finite systems and express them in terms of
the form factors appearing in (2). For a given momentum
g = 27n/N, the form factors generated by integer dimen-
sion operators as in (8) and (10) will then be situated at the
discrete energies ; =2@vl/N with [=n+2,n+
4, ---. The form factors belonging to (11), on the other
hand, will have energies w; = 27v(l + 4K)/N with [ =
nn+2---.

To compare our field theory results for the tail with BA
data for the form factors we have to determine the a priori
unknown parameters in the effective Hamiltonian (6). In
general, they can only be obtained in terms of a small-A
expansion. To lowest order in A, Eq. (8) reduces to the
weakly interacting result in [5,11]. We also checked that in
this limit {3 = 0 for the XXZ model but {3 becomes finite
if we introduce a next-nearest neighbor interaction that
breaks integrability. For an integrable model the coupling
constants can be determined by comparing thermodynamic
quantities accessible by BA and field theory. Lukyanov
[21] used this procedure to find a closed form for {+ and A
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FIG. 2 (color online). Form factors (dots) obtained by BA
compared to formula (8) (line) for A = 0.75, s = —0.1, N =
600, and ¢ = 27/50. The form factors for the exact eigenstates
at w = 27rvl/N are added and represented as a single point. The
inset shows each form factor separately. The number of states at
each level agrees with a simple counting based on multiple
particle-hole excitations created around the Fermi points.

in the case & = 0. Similarly, the parameters 1.+ can be
related to the change in v and K when varying & and we

find Jn_(hy) = 2w/Kv*(a + b/2)/6 and Jn.(hy) =
V27/Kv?b/4, where a= v 'ov/dhl,—,, and b=
K~'9K/dhlj_p,. A numerical solution of the BA integral
equations for v, K for infinite system size then allows us to
fix n. accurately for all anisotropies and fields so that the
formulas for the tail do not contain any free parameters.
The comparison with the form factors computed by BA for
finite and zero field is shown in Figs. 2 and 3, respectively.
We note that the energies of the eigenstates are actually
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FIG. 3 (color online). Sum of form factors at w = 27v(l +
4K)/N (dots) and at @ = 27rvl/N (squares) obtained by BA for
A =025 s=0, N=600, and ¢ = 27/50. The solid line
corresponds to (11), the dotted line to (11) with finite size
corrections included [22], and the dashed line to (10).

nondegenerate and spread around the energy levels pre-
dicted by field theory (see inset of Fig. 2).

In summary, we have presented results for the line shape
of §%(q, w) for small g based on a numerical evaluation of
form factors for finite chains. We established a linewidth
Yq g* for h # 0 by solving the BA equations analyti-
cally for small A. In addition, we showed that the spectral
weight for frequencies v, < w — vlgq| < J is well de-
scribed by the effective bosonic Hamiltonian. We pre-
sented evidence that the line shape of $%(g, w) depends
on the integrability of the model. This becomes manifest in
the field theory approach by a fine tuning of coupling
constants and the absence of certain irrelevant operators.
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