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We have developed a new theoretical formalism for phonon transport in nanostructures using the
nonequilibrium phonon Green’s function technique and have applied it to thermal conduction in defective
carbon nanotubes. The universal quantization of low-temperature thermal conductance in carbon nano-
tubes can be observed even in the presence of local structural defects such as vacancies and Stone-Wales
defects, since the long wavelength acoustic phonons are not scattered by local defects. At room tem-
perature, however, thermal conductance is critically affected by defect scattering since incident phonons
are scattered by localized phonons around the defects. We find a remarkable change from quantum to clas-
sical features for the thermal transport through defective carbon nanotubes with increasing temperature.
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The discovery of the quantization of phonon thermal
conductance as well as quantization of electrical conduc-
tance has had a great impact on mesoscopic and nano-
scopic physics [1–3]. Since the first observation of
quantized thermal conductance �0 � �2k2

BT=3h in dielec-
tric mesoscopic wires by Schwab et al. [4], significant
effort has been expended on exploring new materials ex-
hibiting �0. Carbon nanotubes (CNTs) are expected to be
potential candidates to measure quantized thermal conduc-
tance [5,6] because they are ideal one-dimensional phonon
conductors with a large phonon-mean-free path [6–8].
Recent sophisticated experiments have, in fact, succeeded
in measuring quantized thermal conductance in CNTs [9].

Recently, concern has been raised that various intrinsic
features of pure CNTs are lost because of the presence of
defects in synthesized CNTs. According to recent
molecular-dynamics (MD) simulations, the thermal con-
ductivity in CNTs at room temperature decreases dramati-
cally with increasing defect density [10–13]. Similar to
room-temperature thermal transport in defective CNTs,
low-temperature thermal transport in CNTs is predicted
to be markedly affected by defects, and quantized thermal
conductance might be destroyed due to the presence of the
defects. To the best of our knowledge, the influence of
defect scattering on low-temperature thermal transport
through defective CNTs has not been studied thus far.
The central aim of this Letter is to clarify the effects of
structural defects, such as vacancies [14] and Stone-Wales
(SW) defects [15], on quantized thermal conductance in
CNTs. Contact scattering resistance is not considered here
to focus on the intrinsic conductance of defective CNTs.

In order to clarify the effects of structural defects, a
reliable theory of thermal transport through a nanostructure
is needed. Rego and Kirczenow heuristically derived a
novel formula for thermal current through a mesoscopic
dielectric wire placed between hot and cold heat baths [1]:

 Jth �
Z 1

0

d!
2�

@!�fL�!� � fR�!����!�; (1)

where fL�R��!� is the Bose-Einstein distribution function
of equilibrium phonons with energy @! in the left (right)
lead with temperature TL (TR), and ��!� is the phonon
transmission function. The Landauer formalism has some
remaining issues to be resolved. First, it is not applicable to
an interacting phonon system including phonon-phonon
interactions. A second issue is that there is no systematic
procedure to obtain ��!� for actual nanomaterials with
complex structures on an atomic scale. Thus far, ��!�
has been determined using elastic models for classical
sound waves. Of course, such a treatment is not suitable
for nanoscale systems with complex atomic structures. In
this Letter, we develop a new formalism, overcoming these
remaining issues by utilizing the nonequilibrium Green’s
function (NEGF) technique. The advantage of the NEGF
formalism is that local physical quantities, such as the
nonequilibrium phonon density and the local thermal cur-
rent, can be calculated. This Letter is a first report of the
application of the NEGF formalism to the study of the
influence of defect scattering on phonon transport in CNTs.

The system Hamiltonian H sys is described as the sum of
the harmonic term
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and the anharmonic term H anh. Here si��t� is an operator
in the Heisenberg picture for atomic displacement from
equilibrium along the � direction of the ith atom with mass
Mi. pi��t� is a momentum operator conjugated to the dis-
placement operator si��t�, and ki�;j� represents the spring
constant between the ith atom in the � direction and the jth
atom in the � direction. The system Hamiltonian is as-
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sumed to be divided into five parts: H sys�H L�H LS�

H S�H RS�H R. Here H L=R is the Hamiltonian for the
left or right thermal lead, H S is that for the scattering
region, and H LS�RS� is the Hamiltonian for the coupling
between the scattering region and the left (right) lead. The
anharmonic term H anh is also assumed to exist only in the
scattering term H S. Different temperatures TL and
TR�<TL� are assigned to the left and right regions of the
system, respectively.

The thermal current flowing through the interface be-
tween the left lead and the scattering region can be calcu-
lated from the time evolution of the energy of the left lead:
Jth � �h

_H Li �
i
@
h�H L;H sys�i, where the bracket h	 	 	i

denotes the nonequilibrium statistical average of the physi-
cal observable. The thermal current Jth is rewritten as

 Jth � �lim
t0!t

X
i2L;j2S
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using the greater and lesser Green’s functions associated
with the contact between the left lead and the scattering
region: i@G>

i�;j��t; t
0� � hsi��t�sj��t0�i and i@G<

i�;j��t; t
0� �

hsj��t0�si��t�i. Since the Green’s functions depend only on
the time difference in a steady state, it is convenient to
work in Fourier space (! space). Therefore, in the steady
state, the thermal current is expressed as
 

Jth � �
Z 1

0

d!
2�

@!



X

i2L;j2S
���xyz

ki�;j��G<
i�;j��!� �G

>
j�;i��!� � H:c:�; (4)

where the relation G<
i�;j���!� � G>

j�;i��!� is used.
In accordance with the similar procedure for the NEGF

formalism for electronic transport [16], Eq. (4) can be
straightforwardly rewritten as

 Jth �
Z 1

0
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>
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(5)

where the boldface quantities represent matrices with a
basis in the scattering region. This is a general expression
for the thermal current beyond the Landauer formula (1)
for coherent phonon transport. In Eq. (5), G_

S �!� is the
greater or lesser Green’s function for the scattering region,
and �_

L=R�!� is the greater or lesser self-energy due to
coupling to the left or right lead, which is given by

 � _
L=R �!� � �i�fL=R�!� � 1=2� 1=2��L=R�!�: (6)

Here �L=R�!� � i��r
L=R�!� ��a

L=R�!��, where �r=a
L=R�!�

is the retarded or advanced self-energy due to the coupling
to the left or right lead and is calculated using the mode
matching method [17] modified for phonon transport.

Phonon-phonon scattering is not important for CNTs
below 300 K, which is of interest here [6–8]. In the case

of coherent phonon transport, the greater and lesser
Green’s functions G_ satisfy the Keldysh equation:

 G _
S �!� � Gr

S�w���
_
L �!� ��_

R �!��G
a
S�!�: (7)

The retarded or advanced Green’s function Gr=a
S �!� for the

scattering region satisfies the Dyson equation:

 G r=a
S �!� � �!

2M�D� ��r=a
L ��r=a

R ��
�1; (8)

where D is the dynamical matrix derived from the second
derivative of the total energy with respect to the atom
coordinates in the scattering region, and M is a diagonal
matrix with elements corresponding to the masses of the
constituent atoms. In this work, the total energy of the
CNTs is determined from the Brenner bond-order potential
[18].

Substituting Eqs. (6) and (7) into Eq. (5), the thermal
current in Eq. (5) is reduced to the Landauer formula in
Eq. (1). The phonon transmission function ��!� in Eq. (1)
is also expressed explicitly as

 ��!� � Tr��L�!�Gr
S�!��R�!�Ga

S�!��: (9)

This expression of ��!� is equivalent to that derived by
Mingo and Yang in a different way [19]. In the limit of the
small temperature difference between the hot and cold heat
reservoirs, TL � TR � T � �TL � TR�=2, the thermal
conductance � � Jth=�TL � TR� is given by

 ��T� �
k2
BT
h

Z 1
0
dx

x2ex

�ex � 1�2
��kBTx=@�: (10)

If the phonon transmission is perfect for all acoustic modes
in the low-temperature limit T ! 0, Eq. (10) is given as a
form of an elementary integration that can be integrated
analytically, and the thermal conductance is quantized as
M�0 � M��2k2

BT=3h�, where M is the number of acoustic
modes.

We now apply the formalism developed here to the
thermal transport in defective CNTs. Figure 1 represents
the phonon transmission function for the �8; 8� CNT with
and without defects. The dashed curve is the transmission
function �p�@!� for the perfect �8; 8� CNT without any
defects, and it displays a clear stepwise structure that gives
the number of phonon channels. In the low-energy region
below 2.4 meV, being the energy gap of the lowest optical
modes, the dashed curve shows �p�@!� � 4, indicating the
number of acoustic branches corresponding to longitudi-
nal, twisting, and doubly degenerated flexural modes.
Reflecting the perfect transmission for all acoustic modes,
the thermal conductance ��T� shows four universal quanta
4�0 � 4��2k2

BT=3h� in the low-temperature limit (see
Fig. 2).

The transmission function �vac�@!� for the �8; 8� CNT
with the vacancy and �SW�@!� for the �8; 8� CNT with the
SW defect are described by the red and blue curves in
Fig. 1, respectively. The �vac=SW�@!� is dramatically de-
formed from �p�@!� owing to defect scattering, particu-
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larly at high energies. However, it remains unchanged in
the low-energy region. This is because the long wavelength
acoustic phonons with low energies in the CNTs are not
scattered by local defects such as vacancies and SW de-
fects. This leads to the important conclusion that the ther-
mal conductance of CNTs exhibits 4�0 at cryostatic
temperatures even when the CNTs include a small amount
of defects (see Fig. 2).

The transmission function �vac�@!� shows some dips at
particular energies, which are clearly distinguished from
the dips originating from the van Hove singularity of the
optical phonon branches. These dip positions coincide with
the peaks in the local density of states (LDOS) around the
vacancy (not shown). The appearance of LDOS peaks
means that the phonon density is highly localized around
the vacancy. The transmission dips arise from the scatter-
ing of incident phonons from the lead by the phonon
localized states. The bottom-right inset in Fig. 1 shows
the phonon density around the vacancy at 11.6 meV in-
dicated by the red arrow in Fig. 1. The LDOS peak at
11.6 meV is located at the lowest position and largest
intensity among the peaks. Similarly, �SW�@!� has some
dips at particular energies coinciding with positions of the
LDOS peak due to the SW defect. The dip at 7.0 meV
indicated by the blue arrow lies at the lowest position
among the LDOS peaks associated with the SW defect.
As shown in the top-left inset in Fig. 1, the phonon density
at 7.0 meV is strongly localized around the SW defect.

Substituting the ��@!� obtained into Eq. (10), we can
determine the thermal conductance ��T� as a function of
temperature T. The low-temperature behavior of ��T�
normalized to the universal quantum �0 for �6; 6�, �8; 8�,
and �10; 10� CNTs with and without defects are shown in
Fig. 2. The red (blue) curves represent �vac�SW�=�0 for the
CNTs with the vacancy (SW defect). The dashed curves
represent �p=�0 for perfect CNTs. As discussed above,
all thermal conductance curves approach 4 in the limit of
T ! 0, even in the presence of local defects. In the tem-
perature region shown in Fig. 2, the thermal conductance
�SW=�0 is slightly lower than �vac=�0. This is because
propagating phonons in this region are dominantly scat-
tered by the phonon localized state associated with the SW
defects at 7.0 meV and not by the phonon localized states
associated with a vacancy at the higher energy of 11.6 meV
(see Fig. 1).

We next describe the CNT-diameter dependence of de-
fect scattering on thermal conductance for moderate tem-
peratures up to 300 K. Figure 3 shows the ratios �vac=�p

and �SW=�p for �6; 6�, �8; 8�, and �10; 10� CNTs as a
function of T. The black, red, and blue solid (dashed)
curves are the ratios �vac�SW�=�p for �6; 6�, �8; 8�, and
�10; 10� CNTs with the vacancy (SW defect), respectively.
All the �vac�SW�=�p curves decrease rapidly with increasing
temperature and become nearly independent of the tem-
perature at300 K. The terminal value of �vac�SW�=�p also
decreases as the CNT gets thinner. In other words, the
influence of defect scattering in thin CNTs on the thermal
conductance is more significant than that in thick CNTs.
Interestingly, �vac=�p is clearly lower than �SW=�p at
moderate temperatures, which is in sharp contrast with
the low-temperature case. That is, the incident phonons
are scattered more strongly by the vacancy than by the SW
defect. This result is consistent with previous results of
classical MD simulations at room temperature [13].

κ
κ

FIG. 2 (color). Low-temperature thermal conductances in
�6; 6�, �8; 8�, and �10; 10� CNTs. Red and blue curves represent
��T�=�0 for the CNTs with the vacancy and SW defect, respec-
tively. The dashed curves are for the perfect CNT.
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FIG. 1 (color). Phonon transmission function ��@!� for the
�8; 8� CNTs. Red and blue curves represent ��@!� for the
vacancy and SW defect, respectively. The dashed curves are
for the perfect CNT. The top-left inset describes the phonon
density around the SW defect at 7.0 meV indicated by the blue
arrow, and the bottom-right inset is that around the vacancy at
11.6 meV indicated by the red arrow. The red shading on the
atom spheres indicates the phonon density. (The red shading is
not on the same scale for the two insets.)
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Therefore, the most important finding in this study is that
defect scattering, which is responsible for thermal trans-
port, changes remarkably from a quantum to a classical
nature with increasing temperature.

Finally, we note the electron contribution to the thermal
conductance in metallic CNTs. The ballistic electrons in
metallic CNTs without any defects contribute four quanta
(�4�0) to the thermal conductance [5,6], according to the
Wiedemann-Franz relation between electrical conductance
and electronic thermal conductance. Even in the presence
of the SW defect in metallic CNTs, electronic thermal
conductance is quantized as 4�0 since the SW defect
does not modify the electrical conductance near the
Fermi level [20,21]. On the other hand, with the vacancy,
the electronic thermal conductance is reduced because the
conduction electrons are scattered by the dangling �-bond
states around the vacancy with an energy close to the Fermi
level [20].

The influence of defect scattering on phonon transport in
CNTs differs from that on electron transport. For example,
as discussed above, the propagating electrons in CNTs with
a vacancy are strongly scattered by the dangling �-bond
states [20], whereas the long wavelength phonons are not
perturbed by the vacancy.

In conclusion, we have developed a new formalism for
phonon thermal transport in nanostructures using the
NEGF technique. Applying this to CNTs with local struc-
tural defects, a vacancy, and a SW defect, we found for the
first time that a remarkable change in defect scattering, i.e.,
defect-dependent thermal conductance of CNTs from a
quantum to a classical feature, occurs with increasing
temperature. Our formalism opens the way for a complete
understanding of the underlying physics of phonon trans-

port in nanostructures under various conditions. Finally, we
discussed the advantages of our formalism based on the
NEGF over other theories. Our theory, in a straightforward
manner based on the Feynman diagram technique [22],
takes into account the phonon-phonon scattering effect that
is found to play an important role in thermal transport
above room temperature in a recent experiment [23].
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FIG. 3 (color). The temperature dependence of the ratio
�vac�SW�=�p for the CNT with the vacancy (SW defect). The
black, red, and blue solid (dashed) curves are �vac�SW�=�p for
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