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Growth-Melt Asymmetry in Crystals and Twelve-Sided Snowflakes
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It is in the lexicon of crystal growth that the shape of a growing crystal reflects the underlying
microscopic architecture. Although it is known that in weakly nonequilibrium conditions the slowest
growing orientations ultimately dominate the asymptotic shape, is the same true for melting? Here we
observe and show theoretically that while the two-dimensional steady melt shapes of ice are bounded by
six planes, these planes are not proper facets but instead are rotated 30 degrees from the prism planes of
ice. Finally, the transient melting state exposes 12 apparent crystallographic planes thereby differing

substantially from the transient growth state.
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The relationship between growth, form and structure is
vividly illustrated in crystalline matter, and snowflakes
provide one of the most familiar and compelling examples.
Whether a crystal grows in the laboratory under controlled
conditions or in a natural setting, one recognizes the basic
material through the symmetry of the shape. Despite the
fact that in modern parlance the snowflake is an icon for
nonlinear pattern formation in systems driven away from
equilibrium, understanding the mechanisms by which the
microscopic constituents (water molecules) influence the
macroscopic shape still forms an active area of inquiry. The
scientific study of such problems of growth and form dates
to Hooke, Kepler, and Descartes [1,2]; compilations of
photographs of natural and artificial snowflakes [3,4] re-
veal both complexity and commonality. The allure of the
shapes of snowflakes has long captured the imagination of
artists, laypersons, and scientists alike; their importance
lies both in their beauty and in their ubiquity.

Understanding the underlying tenets of crystal growth
and surface thermodynamics in all materials is a major goal
of condensed matter science, and the considerable breadth
of applicability of ice phenomena (e.g., Ref. [5]) draws
attention to fundamental questions. In equilibrium a three
dimensional crystal at absolute zero is fully faceted (mo-
lecularly smooth) because the energy required to form a
vacancy or adatom cannot be compensated by entropy of
configuration. As the temperature rises entropy comes into
prominence and a smooth orientation can become molec-
ularly rough. Thus, it is known from experimental studies
as well as microscopic and mean-field theory that an ideal,
dislocation-free, equilibrium crystal shape depends on
temperature: it is fully faceted at absolute zero, and be-
comes more rounded, or locally rough, as its temperature
increases [6]. Upon consideration of the dominant inter-
molecular interactions in a material, the bond energies can
be estimated, and hence one can build a picture of the
surface free energy of a crystal, y(fi), as the sum of the
energies of all the bonds broken per unit area in the
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creation of the surface of an orientation fi relative to the
underlying crystalline lattice. The geometric Wulff con-
struction determines the equilibrium crystal shape through
a minimization of y(fi) [7-12]. Through independent con-
trol of temperature and pressure, the entire range of equi-
librium shapes, from fully faceted to completely rough and
rounded, has been observed in ice [13].

Weakly driven growth forms evolving from partially
faceted equilibrium shapes become more faceted during
growth [7,13-19]. This growth induced polygonalization
originates in the fact that the accretion of material normal
to facets is an activated process whereas no nucleation
barrier exists for rough orientations which grow rapidly
and thereby leave behind the slowly moving facets to
dominate the shape. Although the intuition gleaned from
the Wulff shape can be applied to conditions of weak
disequilibrium [16,18], a similar construction on the an-
isotropic velocity, due to Frank [14] and Chernov [15] can,
depending on the initial conditions, produce the steady
state growth shape. Nonetheless, the relation between
equilibrium and growth or melt shapes is much less con-
crete than appears to be widely appreciated [20,21]. We
demonstrate experimentally and theoretically that no direct
analogy to the Frank-Chernov construction exists for melt-
ing and that it is the asymmetry between the kinetics of
growth and those of melting that is responsible. A novel
consequence of this is an “apparent rotation’ of the crys-
tallographic axes during transient melting, the route to
which involves a sixfold crystal becoming 12-fold and
then sixfold again.

A common feature of the iconoclastic six-sided dendritic
stars (crystals growing perpendicular to the crystallo-
graphic ¢ axis) is their fully faceted solid hexagonal core.
Frank [2] made the important point that the vast swath of
growth morphologies exhibited by vapor grown crystals
can only be explained by mechanisms that do not rely on
dislocations, which are largely absent. We have therefore
chosen the simplest model system for which purity is easily
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maintained and growth conditions are finely controlled:
single, dislocation-free, ice crystals grown from their
melts. In particular, we use a high-pressure temperature-
controlled anvil cell [22] to study hexagonal morphologies
in their essence; near the roughening transitions of the
prism planes under conditions of weak disequilibrium.

The sequence of growth and melt shapes in Fig. 1 dis-
plays the entire process. The high-pressure anvil cell is
immersed in a temperature-fixed alcohol bath, but we have
modified the original apparatus, described in Ref. [22], so
that during melting the temperature is raised at a constant
rate using a heater wound around a lower anvil. The
sequence is as follows: (a) In the first panel of Fig. 1 we
show an initial, near equilibrium, shape that is nearly fully
faceted with the sixfold symmetry. (b) When melting is
melted and the facets are pinned. (c), (d), (e) Rough ori-
entations in the corners evolve into planar surfaces and thus
transient 12-sided shapes appear. (f), (g), (h) The roughest
orientations gradually dominate the melt shape with six-
fold symmetry, but these surfaces are slightly curved non-
crystallographic planes. (i) Growth begins at rough
orientations. (j), (k) Transient rounded shapes are seen in
contrast to 12 sides seen during melting. (1), (m), (n),
(o) Fast growing rough surfaces grow out into the corners,
leaving pinned facets behind, as described previously
[19,20,23-25].

Our physical interpretation, which quantifies our pre-
vious heuristic theory [20], is as follows. When melting is
initiated the weakly bound corner molecules can respond
immediately and depart the solid. Thus we observe the
normal motion of facets to be small compared to rough
orientations; the latter moving approximately 15% of the
characteristic crystal size while the former does not move a
discernible distance. However, in contrast to growth, the
motion of a finite facet during melting is not an activated
process. The melt rate of an infinite dislocation-free facet is
limited by the nucleation rate of ‘“negative islands”. A
finite facet differs; molecules detach from the terrace edges
and the facet recedes towards its center, uncovering the
layer below to repeat the process. Hence, the monolayers
bounding the prism facets recede from the corners. Once a
corner molecule departs, it exposes a new corner, and
thereby the process repeats. The ratio of the rate of corner
formation to the rate of recession of the monolayer across
the facet determines the slope of the surface. Clearly
visible is the formation of a 12-sided transient state which
gives way to a six-sided, apparently faceted, state in which
each “facet’”” appears perpendicular to an a axis; a corner
on the equilibrium shape. It thus appears as though the
crystal has rotated by 30 degrees. That the rotation is
cosmetic is demonstrated when growth is initiated because
the facets on the melt shape are dynamically determined as
described above, and are, in fact, molecularly rough.
During growth they move rapidly to reverse the process

initiated at a small drive < 1, only the corners are

and restore the faceted equilibrium crystal to its original
state [19,20,23-25].

When the motion of the phase boundary is limited by
local interfacial processes, it can be modeled as geometric
in the sense that the normal velocity V at an interfacial
point depends on the shape and position of the interface,
and not on field variables modified by the interface motion
or long-range diffusion in the bulk (see, e.g.,
Refs. [23,24]). Whether a crystal is growing or melting,
the interface evolves with a normal velocity that is gov-
erned by the physical kinetics of the surface. In general, the
evolution of an interface is given by

<8C(u, T)> — _va 0
or u

where C (u, 7) is a point on the surface parametrized by u at
time 7 and 7 is the inward-pointing normal. This explicitly
connects the geometry of the macroscopic shape to the
governing microphysics through V, the functional form of
which is constrained by the surface kinetics within the
geometric approach; V = V(6, Au). It is convenient
[23,24] to reparametrize Eq. (1) by the angle 6 between
the positive x axis and the unit tangent to the surface 7.
Thus, the orientation dependence of V captures the tran-
sition in the kinetics from faceted orientations, where V. is
the normal velocity, to rough orientations, where V5 is the
normal velocity, through

V(0, Ap) = Vr(0, An)é(0) + Vr(0, Ap)[1 — £(6)],
2

and £(6) models the transition between them. Equation (1)
can be solved by the method of characteristics [23—-25] to
yield the trajectory of a surface orientation as

C(0, 7) = Co(0) + [-V(0)a + V'i]r, 3)

where V/ = 2.

We initialize our model with the smooth shape shown in
Fig. 1(a) which contains all orientations. As it reaches a 12-
fold state, many orientations have been eliminated.
Essentially, what was a corner of orientations spanning
/3 rapidly becomes a nearly flat segment spanning
|66| < /3. As a result the melt shapes are controlled
by the ratio of the velocity at the roughest orientations to
the velocity at the facet orientations. We extract the normal
velocity from the experimental images; its polar plot out-
lines a petaled flower with the same symmetry as the
crystal. The measured V(6) are then fit to a function of
the form of Eq. (2) and employed in Eq. (3) to predict the
crystal’s shape at later times. Without imposing restrictions
on £(6) and Vz(0), Eq. (2) is quite general.

Here, we take the simplest model for Eq. (2) that pre-
serves the symmetry of the crystal:

£(0) = cos>(30) and Vg(0) = vg + bcos’(36), (4)
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FIG. 1. In the top panel we show a sequence of melting and

growth shapes observed in a high-pressure anvil cell modified
from Ref. [22]. The cell has a constant volume of about 0.01 cm?
and the scale of an individual frame is 0.5 mm. The pressure is
held at 2000 bar and hence the bulk coexistence temperature is
—22 °C, which is measured with a Chromel-Constantan thermo-
couple. The system’s temperature, 7, and pressure, p, are
controlled along a line that is parallel to the bulk coexistence
1

line and we can change the crystal shape by fine control of fb—r <

1, where A u is the departure of the chemical potential from bulk
coexistence. Accordingly, the pressure is continuously varied
due to the difference in volume between the phases, and if T is
held constant the ice crystal takes its equilibrium shape with a
constant volume. The axis of observation is parallel to the
crystallographic ¢ axis, and hence each corner is colinear with
one of the a axes and the six prism facets are clearly visible. The
sequence, which takes 700 seconds, is described in detail in the
text. In the lower panel we show the temperature data with the
circles (labeled a—o0) corresponding to the upper panel; the
warming or cooling rate determines a driving force that we
estimate from observed melt-growth rates of rough orientations
to be £ = 1077,

where vy, is the velocity at the roughest orientations and b
provides a measure of the curvature of the polar plot of V
and is given by the relation V(6 = 7/2) + V(0 = 0) =
36b, where V' = % Finally, we note that Vp(0p, Au) is
implicitly solely defined at facet orientations 65 where it
then depends solely on Aw. Therefore, there are three
parameters in our model for V:Vy, vg, and b. Using this
in Eq. (3), we reproduce the main observations: (i) the melt
process results in a crystal with an apparent reorientation of

axes, (ii) the corners evolve with decreasing curvature, and
(iii) the transient melt shape is a 12-sided figure (see
Fig. 2). The distinction between melting and growth is
clearly demonstrated by the difference in the model veloc-
ity parameters; there is no time reversal symmetry in the
equation of motion (1) that can capture the dynamics of a
partially faceted crystal.

An alternative description of the melt process written in
terms of the surface curvature «, and successful in growth
studies [19,24,25], provides further insight into the melting
process. When « is a function of # a local evolution
equation can be derived,

a—K = —k2V, 5
ks

where V = V + V”. Here, the sign of V controls whether
the curvature increases or decreases. The solution to
Eq. (5) is

Ko

0, =,
«(6,7) 1+ V(@)kyT

(6)

where kg = ko(6, 7 = 0). Hence, in principal, the curva-
ture can diverge; every orientation with negative V could
reach infinite curvature in finite time. As was proved for the
case of growth [25], curvature divergence in melting is
preempted by the loss of “dangerous” orientations which
melt to the facet edge before the critical time. The loss
occurs through the initiation of a shock at a time corre-
sponding to the minimum time for curvature divergence;
the shock consumes the orientations faster than they can

FIG. 2. Comparison of theory with experiment for the melt and
growth sequence a—o of Fig. 1. The digitized experimental
images are shown (light lines) overlain with the theoretical
model (dark lines) as given by using V() = Vgcos?(36) +
[vg + bcos?(30)][1 — cos?(36)] in Eq. (3), where for melting,
in units of v (or in units of ums™!), the parameters vy = 1,
Ve =0.07, b = —0.009 (vg = 0.11, Vp = 0.008, b = —0.001)
are extracted from the initial shape. In the calculations V is
maintained as positive definite and hence during melting we let
V — —V in the above equations by changing the sign of the
parameters. For growth vg = 0.12, Vp = 0.016, b = 0.12 in
ums~! thereby displaying the microscopic origin of the differ-
ence between growth and melting.
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FIG. 3. We plot the measured curvature at § = /2 for the
melt sequence a—h of Fig. 1. The data (closed circles) are fit to a
function of the form A/(1 + Bt) (dashed line, where A/10° =
23.5+ 1.1 m ! and B = 0.026 = 0.004 s~ ') and are compared
to the theoretical prediction (solid line) determined by inserting
the velocity model used to calculate the melt shapes in Fig. 2 into

Eq. (6).

blow up. We measure the curvature directly from the
experimental sequence and calculate the expected curva-
ture from our model. The agreement is demonstrated in
Fig. 3. Finally, we note an important and fortuitous aspect
of a geometric theory of melting is that as the crystal melts
the validity of the geometric assumptions increases. The
surface area of a melting crystal continuously decreases
thereby reducing the effect of latent heat on the local
conditions of disequilibrium. Such an effect depends on
the surface state, and we estimate that as the facet size
becomes small compared to the circumference, a geomet-
ric model provides an increasingly accurate description.
This explains the close agreement between our model and
experiment.

We have examined the basic relationships between equi-
librium and growth or melt shapes to find that there is an
asymmetry between growth and melting that has a funda-
mental origin in the kinetics of molecular attachments and
detachments at the surface. We have used a high-pressure,
temperature-controlled optical cell to observe that while
the ostensibly two-dimensional steady melt shapes of ice
are bounded by six planes, the planes themselves are not
proper facets but instead are rotated 30 degrees from the
prism planes of ice. Therefore, the similarity with faceted
growth shapes is solely cosmetic. Finally, we find that the
transient melting state exposes 12 apparent crystallo-
graphic planes and thereby differs substantially from the
transient growth state. We have described these processes
quantitatively using a geometric theory for the melt shape
evolution. The results are basic to the growth and melting
of all solids and are of geophysical relevance due to the
ubiquity of ice crystal growth in the Earth’s bodies of water
and throughout its atmosphere.
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