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We present a general theory for the onset of coherence in collections of heterogeneous maps interacting
via a complex connection network. Our method allows the dynamics of the individual uncoupled systems
to be either chaotic or periodic, and applies generally to networks for which the number of connections per
node is large. We find that the critical coupling strength at which a transition to synchrony takes place
depends separately on the dynamics of the individual uncoupled systems and on the largest eigenvalue of
the adjacency matrix of the coupling network. Our theory directly generalizes the Kuramoto model of
equal strength all-to-all coupled phase oscillators to the case of oscillators with more realistic dynamics

coupled via a large heterogeneous network.
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In recent years, much progress has been made in describ-
ing the complex structure of real world networks [1,2]. The
study of dynamical processes taking place in such com-
plex networks has applications in fields ranging from
biology to engineering. One of the most important phe-
nomena involving networks of coupled dynamical systems
is the emergence of large-scale coherent behavior [3,4].
It is often observed that large collections of heterogene-
ous dynamical systems (e.g., cells, fireflies) synchronize
their rhythms so that a significant proportion of the systems
have states that are highly correlated with those of the
others. It is natural to ask what determines the emergence
of such coordinated behavior given the network of inter-
actions between the dynamical systems and their individ-
ual dynamics.

The case of equal-strength all-to-all coupled phase os-
cillators was studied by Kuramoto [5], who considered the
case of N oscillators, each of which is described by a phase
6; and an intrinsic frequency w ;. Kuramoto assumed sinu-
soidal coupling so that the phase of oscillator j evolves as
0 i =w; + k>N_ sin(d, — 6;). Kuramoto found that, in
the limit N — oo, for coupling strengths k less than a
critical coupling strength k. that depends on the distribu-
tion of frequencies, the phases of the oscillators are inco-
herent; i.e., 6 ; are uniformly distributed on [0, 27r). For
values of the coupling strength k larger than k.., a signifi-
cant fraction of the oscillators evolve with a common
frequency. The Kuramoto model has become a classical
paradigm for the emergence of coherent behavior in an
ensemble of heterogeneous oscillators (see Ref. [6] for
reviews).

Although the Kuramoto model has the advantage that
it can be treated analytically, it depends on the system
being simple in two major aspects. First, the network is
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assumed to be all-to-all, so that every oscillator is coupled
with uniform strength to every other oscillator. Second,
the dynamics and coupling term are highly simplified:
each oscillator is described only by its phase and the
coupling term is sinusoidal. Recently, collections of
coupled dynamical systems which have either a more
general interaction network or a more general dynamics
have been studied. In previous works [7,8] (see also
Refs. [9-13]), we have studied the Kuramoto phase oscil-
lator model generalized to the case of a general inter-
action network described by an adjacency matrix. We
found that there is still a transition to synchrony at a criti-
cal coupling strength that depends on the largest eigen-
value of the adjacency matrix and the distribution of fre-
quencies. On the other hand, ‘“globally‘‘ coupled (i.e.,
equal coupling strength, all-to-all) collections of many
dynamical systems with more general dynamics (e.g.,
mixed collections of chaotic and periodic oscillators, cha-
otic maps, etc.) have recently been studied [14-18], and a
transition to synchrony has been observed at coupling
strengths that depend on the dynamics of the uncoupled
systems.

Our aim in this Letter is to generalize these previous
works by studying large collections of heterogeneous gen-
eral dynamical systems coupled by networks with complex
topology. We find that in this general case there is a
transition to coherence, and that the coupling strengths at
which it occurs can be obtained from the uncoupled indi-
vidual unit dynamics and the eigenvalues of the adjacency
matrix. Thus, we achieve a separation of the problem into a
part depending on the network only and a part depending
on the individual unit dynamics only [19]. Our model
allows strong heterogeneity and different dynamics in the
collection of dynamical systems, making it potentially
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appropriate to describe biological or other strongly hetero-
geneous systems.
We study networks of N coupled maps satisfying

N
A = £ )+ wld + kg S A, [q (")
m=1
—{q(x))]. (1)
Here j = 1,2,..., N labels the map and we are interested

in large N, f (xﬁlj), ;) determines the uncoupled dynamics
of each individual map with a parameter w ;; for each map j
the vector of parameters w; is chosen randomly and inde-
pendently of j with a probability distribution p(u); and the

term wﬁ*,’) is a random noise which is assumed to be statis-

tically independent of j and n and to satisfy E[w$'] = 0,
E[wPwi] = 028,,,0;;, where E[-] represents the ex-
pected value. In the coupling term, k is a global coupling
strength and the scalar functions g and g are assumed to be
smooth and bounded. The notation () represents the aver-
age over the distribution of the vector of parameters w; and
over the natural measures of the attractors of the noisy
uncoupled (k = 0) system. Alternatively, (g) is the u
average of the infinite time average of g(x,) over a typical
orbit x,, of the noisy uncoupled system. We remark that (g)
is independent of time. We also note that x can be a vector
for the situation of multidimensional individual maps. For
simplicity, in what follows we consider x to be a scalar.

The N X N matrix A}, determines the network of inter-
actions: node m interacts with node j only if A;, # 0. We
refer to those nodes m for which A, # 0 as the neighbors
of node j, and to d; = SN, Aj, as the degree of node j.

We are interested in studying system (1) for the case in
which nodes have a large number of neighbors. In this case,
if the initial conditions are chosen distributed according to
the natural measure of the attractors of the uncoupled
systems, then, because of the large number of terms in
the sum in the coupling term in Eq. (1), the fact that x,, are
distributed according to the measure of the uncoupled
attractors, and the lack of correlations between the parame-
ter vectors and the network, we can approximate

N N
Z Aij(xglm)) = <Q(X)> Z Ajmr (2)
m=1 m=1

and equality of these sums applies in the limit of an infinite
number of neighbors. We refer to this situation as the
incoherent state, and we will study in what follows its
linear stability. Under the previously mentioned assump-
tion of a large number of neighbors per node, the incoher-
ent state is (approximately) a solution of the system (1). Its
linear stability can be studied using the same methods that
were used in Ref. [17] for the all-to-all case. In the follow-
ing, we will adapt these techniques to the case of general
connectivity.

In order to study the linear stability of the incoherent
state, we assume that xﬁ{) is in the incoherent state and
introduce an infinitesimal perturbation 6xf{). Linearization

of Eq. (1) produces

N

xlyy = 16, w)ol + kg() S Ayq'exd. (3)
=1

In order to solve Eq. (3) we consider (as in the variation of

parameters method for differential equations) a perturba-
(i) (@) (@)

tion €,” of the uncoupled system e, ., = f’ (xff), L)€En
with €, = 1. Defining i = ;V:l Aijq’(x,g’))éix,(/) and as-

suming exponential growth, so that rd = YDy, we ob-
tain for large n [20]

N no e (D) (i) (), p—n—1

. €
,y(m) _ k§ Amzy(l) z . q (xn+1) n+lg(xl7 )77 )
i=1 p=0

: “)
ff;)ﬂ

In order to proceed further, we will again use the assump-
tions of large number of neighbors per node and statistical
independence of the network and the vector of parameters.
As we did in Eq. (2), we approximate Eq. (4) by

no i)y 0 (i) Ca—I\ N
y™ =k<z 4%y )€,118(xp )" >2Amn/(l‘). &)
i=1

p=0 5S)+1

[If the sum over i in Eq. (4) is imagined as approximating
N times the expected value of a product of two random
variables, Eq. (5) approximates N times the product of the
two expected values as suggested by our assumption of
their independence. ]

Let Q(n) be the average in Eq. (5). With m = n — p,
and letting n — oo,

o =73 g e n ) ©)

m=0 Sn—m+1

This quantity depends only on the dynamics of the indi-
vidual uncoupled oscillators, and also results from the
analysis of the globally coupled case [17]. From Eq. (5)
we obtain u) = kCAjQ(n)u(f), where 1) and A; denote,
respectively, the eigenvectors of A and their corresponding
eigenvalues. The onset of instability of the incoherent state
corresponds to || = 1, or n = ¢'“. Thus, network mode j
becomes unstable at a critical coupling strength satisfying

1= k,1,0(e™), ™

where the critical frequency  is found by Im[A;Q(e'*)] =
0, and Im denotes the imaginary part. We are interested in
the solutions k. of Eq. (7) with the smallest magnitude.
Typically, they correspond to the mode associated with the
eigenvalue of largest magnitude, which is usually real [21].
In this case the critical frequency is found from
Im[Q(e’?)] = 0 and is independent of the network.

We remark that the definition and numerical computa-
tion of Q(n) is in general nontrivial, since for |n| = 1
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(necessary for investigation of the onset of coherence) the
individual terms in the sum in Eq. (6) diverge with m for
typical initial condition in chaotic maps. However, for
large enough |7n| these terms decay exponentially with
increasing m and consequently the sum and average can
be interchanged, so that

Q(m) =n"! Z<:"7+161’(xn+1)g(xn—m)>n’”’- ®)
m=0

n—m+1

In Refs. [17,18] it is argued that the averages in the
summand of (8) decay exponentially with m, so that (8)
can be analytically continued to || = 1 as desired.

We note that the function Q(7) depends exclusively on
the dynamics of the uncoupled oscillators and their pa-
rameter distribution function p(u), while the eigenvalues
A; depend exclusively on the network. Therefore, an inde-
pendent treatment of these problems allows determination
of the critical coupling strengths for the full system given
by Eq. (1).

We now present two examples illustrating our theory. In
order to quantify the coherence, we define an order pa-
rameter r by

) < ( N d gl - <q(X)>]>2>,’ ©

re = =
> =t dn

where (-), denotes a time average and the in-degree d ; is
defined by d,,, = Zj-vzl Aj,. Note that the numerator can be
written as Z;V:IZ%:IA jm[q(xﬁlm)) —{g(x))], and, there-
fore, r measures the rms of the coupling term in Eq. (1)
[aside from the factor g(x\")]. Thus, the incoherent state
corresponds to r = (. We will investigate what happens to
r as the coupling strength k is increased past the critical
values predicted by the theory.

In our numerical experiments, we compute the order
parameter r using Eq. (9) with x\™ obtained from iteration
of Eq. (1). We calculate the time average using 1000
iterations after the initial transients have disappeared.

As an example, we consider [17] for the functions in
Eq. (1), £ w;) = 22 + u,, g(x) = cosx, and g(x) =
sin(2x) + sin(4x). Throughout x is regarded as an anglelike
variable and its value modulo 27 to be taken where appro-
priate. In Ref. [17] Q(e’®) was calculated for Gaussian
noise with mean zero and standard deviation o to be

—a?/2

o) = 3“2

—50%/2

)|
(10)

(cos()) + 2%

e2

We numerically consider the following two examples,
listed below with the theoretical critical coupling strengths
obtained using expression (10) in Eq. (7). (1) Identical
noisy maps with o = 0.4, p(u) = 8(u). For this example
the solutions of Eq. (7) are k.A; = 1.49 and k.A; =
—0.88. (2) Heterogeneous noiseless maps with o = 0,
p(u) =2/7if 0 = u < /2, 0 otherwise. In this example

we obtain k.A; = 37/5 and k.A; = —37/2. For the net-
work connectivity, we consider a scale-free network with
exponent v, i.e., a network in which the degree distribution
P(d) satisfies P(d) « d~7 for d = d,;, and 0 otherwise.
We impose a lower cutoff d = d;, so that our assumption
of a large number of neighbors per node is satisfied. We use
v =3, dyin = 100 for example 1 and y = 2.5, d,,;, = 50,
and d,;, = 200 for example 2. In order to construct such
networks we use the Random Graph model of Chung et al.
[22].

For scale-free networks as described above, the largest
positive eigenvalue A, is significantly larger than the
magnitude of the most negative eigenvalue A_, and so
the mode desynchronizing first is the one associated with
the largest positive eigenvalue. Consequently, the value of
A; used to determine the critical coupling strengths k. for
these examples will be A, .

In Figs. 1(a) and 1(b) we show the square of the order
parameter as a function of k for examples 1 and 2 with N =
105 and N = 20000, respectively, (the insets show the
same quantity on a logarithmic scale). For example 1
[Fig. 1(a)] the order parameter grows for values of the
coupling strength close to the positive and negative critical
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FIG. 1 (color online). The order parameter, 2, plotted on a
linear scale as a function of the coupling strength k. The insets
show the same data plotted on a logarithmic scale for r2.
(a) Example 1 (identical noisy maps) with a scale-free network
with N = 10°, exponent —3 and d,,;, = 100. (b) Example 2
(heterogeneous noiseless maps) with a scale-free network with
N = 20000, exponent —2.5, and and lower cutoff d;, = 50
(boxes) and d,,;, = 200 (stars). The vertical lines indicate the
theoretical values for the critical coupling strength.
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values predicted by the theory (vertical lines in the figures).
For example 2 [Fig. 1(b)] the transition on the positive side
is quite sharp and occurs very close to the theoretical value
k.1 = 1.88, while on the negative side the transition,
although somewhat less well-defined, also occurs close to
the theoretical critical coupling strength k., = —4.71. On
the negative side, the transition is not so sharp. However,
we observe that as we increase d,,,;, from 50 (boxes) to 200
(stars), the transition becomes sharper. Generally, we find
that the agreement with the theoretical results improves as
the minimum degree d,;;, and N become larger [23]. The
plots in Fig. 1 were produced by starting in the incoherent
state and increasing the magnitude of the coupling strength
k from zero. We have found that the transitions in our
examples are not hysteretic; i.e., the same behavior is
observed if we use the synchronized state as an initial
condition and decrease the magnitude of the coupling
strength. We note that in the globally coupled case, it
was found that the computation of Q(n) fails to converge
for an ensemble of identical noiseless logistic maps [17]. It
was argued that this results from structural instability of the
map and singularities in its invariant density, which make a
perturbation approach questionable. Since the definition
and numerical determination of Q(n) in our case and for
the globally coupled case are identical, the lack of con-
vergence observed for this example in the globally coupled
case will also occur in the case of a network. However, we
note that a small amount of either noise or parameter
heterogeneity was shown in Ref. [17] to restore the validity
of the results.

In summary, we have studied the onset of synchroniza-
tion in large networks of coupled maps (the case of coupled
continuous time oscillators can also be treated by these
methods and will be discussed elsewhere). We have found
that the critical coupling strength at which the transition to
synchrony takes place depends separately on the dynamics
of the individual uncoupled oscillators and on the largest
eigenvalue of the adjacency matrix of the network. Thus,
we have achieved a separation of the problem of the
stability of the incoherent state for networks of coupled
dynamical systems into a part depending on the dynamics
of the uncoupled individual units and a part depending
exclusively on the network [19]. Our theory directly gen-
eralizes the Kuramoto model of equal strength all-to-all
coupled phase oscillators to the case of oscillators with
more realistic dynamics coupled in a potentially complex
network. The results we obtain suggest that knowledge of
network properties that favor larger maximum eigenvalues
can be used to promote synchronism in large networks of
coupled dynamical systems.
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