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Estimating the Shannon Entropy: Recurrence Plots versus Symbolic Dynamics
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Recurrence plots were first introduced to quantify the recurrence properties of chaotic dynamics. A few
years later, the recurrence quantification analysis was introduced to transform graphical representations
into statistical analysis. Among the different measures introduced, a Shannon entropy was found to be
correlated with the inverse of the largest Lyapunov exponent. The discrepancy between this and the usual
interpretation of a Shannon entropy is solved here by using a new definition—still based on the recurrence
plots—and it is verified that this new definition is correlated with the largest Lyapunov exponent, as
expected from the Pesin conjecture. A comparison with a Shannon entropy computed from symbolic
dynamics is also provided.
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Chaotic dynamics is usually defined as low dimensional
deterministic dynamics with (i) a great sensitivity to initial
condition and (ii) some recurrence properties. This allows
an aperiodic solution bounded in the phase space to be
obtained. The recurrence properties are therefore not nec-
essarily trivial and Eckmann, Hamphorst, and Ruelle [1]
introduced a graphical representation of them. A recur-
rence plot Rij is a square array built as follows. Every point
of the phase space trajectory fxigNi�1 is tested to see whether
it is close to another point xj of the trajectory, that is,
whether the distance between these two points is less
than a specified threshold �. In this case, the point is said
to be recurrent and is represented by a black dot.
Otherwise, the point is not recurrent and is represented
by a white dot. This can be described as a N � N array

 Rij � ���� k xi � xj k� (1)

where ��xi� is the Heaviside function.
A few years later, Trulla et al. [2] coupled the recurrence

plots with various measures, helpful for transforming
graphical representations into statistical analysis. With
this quantification, the recurrence plots have been used to
investigate more and more varied topics such as heart
beats, neuron signals, hydrophobicity in prions, exchange
rates, chemical reactions, ecosystems, epileptic seizures,
etc., [3–10]. Among the different measures used was the
Shannon entropy which was correlated with the inverse of
the largest Lyapunov exponent. This is quite opposite to the
usual meaning of a Shannon entropy, which is a measure of
the complexity of the dynamics. We propose here a new
definition of the Shannon entropy, still computed from the
recurrence plot, to obtain a measure which increases when
the chaotic dynamics is developed. We start by determin-
ing some parameters which can affect the results.

It has been shown that a recurrence plot analysis is
optimal when the trajectory is embedded in a phase space
reconstructed with an appropriate dimension dE [11]. Such
a dimension can be well estimated using a false nearest
neighbors technique as introduced by Kennel et al. [12] or
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improved by Cao [13]. The dE-dimensional phase space is
then reconstructed using delay coordinates. The time delay
� can be estimated using mutual information [14] or the
first zero of an autocorrelation function [15], but most of
the time a visual inspection works well too. Basically, the
time delay has to be as small as possible and always less
than a quarter of the pseudoperiod. A parameter specific to
the recurrence plot is the threshold �. Many trials lead us to
choose (for all the dynamics investigated) a threshold equal
to

������
dE
p

� 10% of the fluctuations of the signal. The thresh-
old is therefore automatically computed from the time
series investigated. Thus, only two parameters need to be
determined: the embedding dimension, dE, and the time
delay, �. When not extracted from a Poincaré section, the
time series used will be sampled at �. This appears to be a
good balance between covering each oscillation and cover-
ing the whole attractor.

Among the quantifiers introduced by Trulla et al. [2], the
Shannon entropy is defined as

 S � �
XH

n�1

Pn log�Pn� (2)

where H is the length of the maximum recurrent segment,
Pn � 0 is the relative frequency of the periodic segment
with length n > 0. Since the Shannon entropy quantifies
the complexity of the dynamics, it should increase when
the chaotic behavior is developed, for instance, when the
bifurcation parameter � of the logistic map xn�1 �
�xn�1� xn� is increased. Unfortunately, this is quite op-
posite to the above definition [10]. This was originally
pointed out by Eckmann et al., since they claimed that
line lengths on recurrence plots are directly related to the
inverse of the largest positive Lyapunov exponent [1]. On
the other hand, it is expected that the Kolmogorov-Sinaı̈
entropy should be proportional to the largest Lyapunov
exponent according to the Pesin conjecture [16].

To obtain a better estimation of the Shannon entropy
from recurrence plots, denoted as SRP, the key point is to
replace Pn with the relative frequency of the occurrence of
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the diagonal segments of nonrecurrent points (made of
white dots). Indeed, a white dot representing a nonrecur-
rent point is nothing more than a signature of complexity
within the data. With this definition, SRP increases as the
bifurcation parameter increases [as shown for the logistic
map in Fig. 1(b)]. There is a one-to-one correspondence
between the new definition of SRP and the positive largest
Lyapunov exponent. In particular, it is possible to identify
periodic windows (at least the largest ones). By definition,
a Shannon entropy is positive. Consequently, when the
Lyapunov exponent becomes negative, SRP saturates to 0.

Another common way to estimate a Shannon entropy is
based on symbolic dynamics, here denoted as SSD [17,18].
The advantage of SSD is that it can be quickly (in terms of
time computation) estimated over long time series. The
Shannon entropy SSD is obtained by replacing Pn with the
relative frequency of the nth sequence made of k symbols.
For the logistic map, the partition is not dependent on the
bifurcation parameter and is given by the critical point
located at the maximum of the parabola, that is, at xc �
0:5. Thus, the time series fxigNi�1 is mapped into a sequence
of symbols such as si � 0 if xi < 0:5 and Si � 1 if xi >
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(a) Largest Lyapunov exponent
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(b) Shannon entropy S RP from recurrence plots
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(c) Shannon entropy S SD from symbolic dynamics

FIG. 1. Comparison between the largest Lyapunov exponent
and the Shannon entropy for the logistic function. One thousand
data points are used for computing SRP (b) and 3000 for SSD (c).

25410
0:5. The Shannon entropy SSD thus estimated [Fig. 1(c)] is
related to the largest Lyapunov exponent [Fig. 1(a)] as SRP.

Both of these Shannon entropies depend on the parame-
ters. From recurrence plots, computations monotonically
depend on the threshold � in Eq. (1) as shown in Fig. 2(a).
Indeed, increasing the threshold can be seen as replacing
nonrecurrent points by recurrent points; it thus decreases
the entropy. A threshold around

������
dE
p

� 10% � 0:17
avoids the fluctuations observed when the chosen thresh-
olds are too low. Safe relative comparisons can therefore be
performed. Using symbolic dynamics, computations de-
pend on the partition—not investigated here—and the
sequence length k. With N � 3000 data points, the esti-
mation starts to saturate around k � 12 [Fig. 2(b)]. Such a
saturation results from poor statistics (3000 data points
distributed over more than 3000 possible sequences). As
a result, k should be chosen such that 2k � N. When SSD is
computed, a data set larger than for computing SRP is thus
required. Computing SRP avoids the explicit construction
of generating partitions as required when symbolic dynam-
ics is used. Indeed, partitions require very sophisticated
algorithms as detailed by Plumecoq and Lefranc [19]
among others. However, the computational time for SRP

with a long data set (N > 3000) becomes significantly
greater than for computing SSD over the same data set.

Another advantage of the Shannon entropy SRP over SSD

is when the noise-contaminated logistic map xn�1 �
�xn�1� xn� � �n is investigated (Fig. 3). While SRP esti-
mated using the recurrence plots [Fig. 3(b)] presents be-
havior similar to that of the largest Lyapunov exponent
[Fig. 3(a)], SSD appears to be less robust against noise
contamination. In particular, there is no longer a trace of
the period-3 window, although it is still identifiable with
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(a) Shannon entropy SRP versus
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(b) Shannon entropy SSD versus k

FIG. 2. Shannon entropy estimations depend on different pa-
rameters, according to the approach. (� � 3:94)
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the largest Lyapunov exponent as well as with SRP.
Moreover, there is a strong sensitivity to the noise con-
tamination near the bifurcation, as exemplified around
� � 3:25 [Fig. 3(c)]. In fact, the noise contamination
strongly affects the symbolic sequence for all points lo-
cated around the critical point. This is sufficient to blurr the
details of the bifurcation diagram. There is thus great
advantage in computing Shannon entropy using recurrence
plots since (i) there is no partition to define and (ii) the
estimation is more robust against noise contamination.

Recurrence plot analysis can be used for continuous
time series as well as for time series formed from the
intersections of the phase trajectory with a Poincaré sec-
tion. In order to check whether the analyses from continu-
ous and discrete time series are equivalent, the Shannon
entropy is now estimated for the Rössler system [ _x �
�y� z, _y � x� ay, and _z � b� z�x� c�] used with
parameters b � 2 and c � 4. Parameter a will be used as
a bifurcation parameter between 0.38 and 0.432, that is,
over the interval corresponding to unimodal dynamics such
as the logistic map [20]. The bifurcation diagram for the
Rössler system [Fig. 4(a)] is thus similar to the bifurcation
diagram for the logistic map. Direct comparisons between
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(b) Shannon entropy S RP from recurrence plots
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(c) Shannon entropy SSD from symbolic dynamics

FIG. 3. Comparison between the largest Lyapunov exponent
and the Shannon entropy for the logistic function contaminated
by a multiplicative noise (0.5%).
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the logistic map and a Poincaré section of the Rössler
system (with a 2 �0:325; 0:432	) are thus possible.

We start by estimating Shannon entropies of the Rössler
system using a Poincaré section defined as xn � xc with
_xn > 0 where xc is the coordinate of its inner fixed point.
Estimations are performed with the set fyng of the y coor-
dinate of the intersections as with the data generated from
the logistic map. Results are in agreement with those
obtained for the logistic map [compare Figs. 4(b) and
4(c) with Figs. 1(b) and 1(c)].

The Shannon entropy from recurrence plots is now
computed from the different variables of the Rössler sys-
tem. It is denoted �SRP to avoid any confusion with SRP

computed in a Poincaré section. Delay coordinates with a
time delay � � 1:5 s (to compare to the pseudoperiod
equal to 6.2 s) are used to reconstruct a 3D phase space
(DE � 3 is confirmed by an estimation with a false nearest
neighbor technique). For these computations, N � 1500
data points are retained. In spite of the data set being
slightly larger compared with the 1000 points used in the
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(a) Bifurcation diagram versus a
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(b) From recurrence plots
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(c) From symbolic dynamics

FIG. 4. Bifurcation diagram (a) of the Rössler system com-
puted over the interval where the dynamics is unimodal.
Comparison between the Shannon entropy estimated in a
Poincaré section (b) from the recurrence plots and (c) from
symbolic dynamics.
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FIG. 5. Shannon entropy computed using recurrence plots
from the different variables of the Rössler system. A 3D phase
space is reconstructed using delay coordinates with a time delay
� � 1:5 s. Fifteen hundred data points sampled at � are used.
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Poincaré section, estimations of �SRP from the x or the y
variables (Fig. 5) are less accurate than SRP computed in a
Poincaré section. The period-3 window is not clearly dis-
tinguished and the �SRP tends to decrease for a > 0:425, a
tendency observed neither in the Lyapunov exponent nor in
SRP. Moreover, the quality of the estimation of the Shannon
entropy clearly depends on the choice of the variable used.
The poorest estimation is obtained from the z variable of
the Rössler system in agreement with the observability of
the dynamics; this observability is lower when computed
from the z variable than from the two others as discussed
elsewhere [21,22]. It would be therefore much more effi-
cient to estimate the Shannon entropy working within a
Poincaré section than from a ‘‘continuous’’ time series.

Recurrence plots can be widely used to analyze the
properties of dynamics. A new definition of the Shannon
entropy has been proposed. It gives a measure which
increases with the complexity and which is strongly corre-
lated to the largest Lyapunov exponent. Estimating the
Shannon entropy using recurrence plots is more robust
against noise contamination than when symbolic dynamics
is used. Moreover, the former does not require a partition
of the attractor to be constructed, not always easy to do.
When estimated with recurrence plots computed from time
series (not within a Poincaré section), the Shannon entropy
is not very sensitive to the complexity of the dynamics. In
addition to that, there is a strong dependence on the choice
of the observable which results from the observability of
the dynamics. We would thus recommend using estima-
25410
tions of Shannon entropies from time series only when a
Poincaré section is too difficult to obtain.
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