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Distillation of Squeezing from Non-Gaussian Quantum States
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We show that single copy distillation of squeezing from continuous variable non-Gaussian states is
possible using linear optics and conditional homodyne detection. A specific non-Gaussian noise source,
corresponding to a random linear displacement, is investigated experimentally. Conditioning the signal on
a tap measurement, we observe probabilistic recovery of squeezing.
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Nonclassical states such as continuous variable (CV)
entangled and squeezed states serve as enabling resources
for many CV quantum information protocols [1] as well as
for highly sensitive measurements beyond the shot noise
limit [2]. The efficiency of these applications relies cru-
cially on the state’s nonclassicality (i.e., the degree of
single- or two-mode squeezing). Therefore, uncontrolled
and unavoidable interaction of the system with the environ-
ment and the resultant loss of squeezing in generation or
transmission should be combated. This can be done by
using a distillation protocol which probabilistically selects
out squeezed states from a mixture, hereby increasing the
output state’s squeezing.

Various protocols exploiting non-Gaussian operations to
probabilistically distill two-mode squeezed Gaussian
states have been proposed [3]. These protocols are, how-
ever, experimentally challenging. In addition, it has been
proven that the distillation of two-mode squeezed Gaussian
states by means of more feasible local Gaussian operations
is unattainable [4]. Likewise, it has been shown that it is
impossible to increase the squeezing of a single-mode
Gaussian squeezed state using Gaussian operations and
homodyne detection [5].

There has, however, been no work devoted to the dis-
tillation of CV Gaussian states corrupted by non-Gaussian
noise. This occurs naturally in channels with fluctuating
properties, i.e., gain or phase. Such transmission produces
mixture noise [6], an example of which is the fading
channel [7]. Therefore, extending the work on Gaussian
noise, we pose the question: is it possible to distill single-
mode Gaussian squeezed states with superimposed non-
Gaussian noise using linear optics and homodyne detec-
tors? We answer this question in the affirmative and pro-
vide an experimental demonstration.

The set of non-Gaussian noise sources is large. Thus, in
the spirit of early investigations of mixture noise [6], we
choose to first theoretically and experimentally consider
the simple yet exemplary case of discrete noise. Later we
generalize our protocol to continuous noise with a focus on
fluctuating attenuation in the form of the so-called fading
channel, a model of turbulent atmospheric channels [7].
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We begin by considering a squeezed vacuum state per-
turbed by phase space kicks or jitter, attributable to im-
perfect generation or transmission through a noisy channel.
Assuming these perturbations cause a linear phase space
displacement, a convex mixture of two Gaussian squeezed
states is created

W(x, p) = (1 — y)Wy(x, p) + yW,(x, p), (1)

where vy is the probability of displacement, and the indi-
vidual constituents of the mixture (i = 0, 1) are described
by the Wigner functions
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Here x and p are the amplitude and phase quadratures.
A%X, and A?Pg, are the corresponding variances of the
input state. Xy, pp = 0 and X;, p; are the mean values of the
initial and displaced squeezed states, respectively. We
assume the two individual Gaussians to be equally
squeezed in x: A*X, <1, where A’X,A*P, = 1. The
first two moments of the amplitude quadrature of W(x, p)
are (x) = yx; and (x*) = A?X, + &7, and thus the vari-
ance of the amplitude quadrature of the corrupted state of
Eq. (1) is A2X = A%X,, + y(I — y)x}. The second term
here originates from the noise and degrades the squeezing.
The aim is to recover the squeezing by distilling the initial
squeezed state from this mixture.

A schematic of the distillation protocol is shown in
Fig. 1. A polarization squeezed state, mathematically
equivalent to a squeezed vacuum state [8,9], is modulated
to generate a noisy non-Gaussian state. This is incident
upon a beam splitter with reflection R and transmission 7',
producing correlated output states. Using a Stokes, or
equivalently homodyne, detector a given quadrature of
the tap beam is measured. Conditioned on this measure-
ment, the signal is selected only if the outcome lies above a
given threshold value, as in Ref. [10]. Because of the
correlations between the signal and tap beams, the scheme
accomplishes a probabilistic distillation of the noisy input

Wi(x: p) =
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FIG. 1. Schematic of the experimental setup for the genera-
tion, distillation, and verification of non-Gaussian squeezed
states.

state. A similar strategy was proposed to purify decohered
Schrodinger cat states [11].

We now present a theoretical description of the distil-
lation. The tap beam splitter transforms the quadratures of
the Wigner function to, for the transmitted signal beam,
x, = /Tx + /Rx, and p, = JTp + +/Rp,, where x, and
p, are uncorrelated vacuum contributions. We write the
signal Wigner function after (i) detection of the tapped
signal and (ii) postselection of the signal as

1
W(xsr ps) = ﬁ[(l - 'Y)GO(XS’ ps)WO(xs’ ps)
+ yGl(xs’ ps)Wl (xs’ Ps)]» (2)

where I1 is the success probability and G;(x;, p,) is a filter
function which incorporates the effect of the tap measure-
ment and postselection. It thus depends on the measured
quadrature and the threshold value. Since the goal of the
distillation is to recover the initial squeezing, we consider
only the marginal quadrature distribution associated with
the squeezed quadrature, x. Measuring the phase quadra-
ture in the tapped signal p, [12], the resulting probability
distribution of the squeezed quadrature in the signal reads

P(x) = 1[0 = PgoPo(x) + P} G)

where Il = (1 — y)go + vg; and the individual marginals
Py(x;) and P,(x,) are Gaussian functions with variance
A%X; = TA’X,, + RA’X,, and centered at X, =0 and

VT, respectively. The filter function in Eq. (3) is

1 [pth - ﬁ,ﬁ}
g; = zErfc| ————|.
2 V2A%P,

Here pg, is the postselection threshold and A’P, =
RA?Pg, + TA?P,. After distillation the first two moments
of the signal are (x,) = (VT%)/(1+r) and (x2)=
A2X, + (Tx?)/(1 + r), where r = (1 — y)go/vg:. Thus
the distilled squeezing is given by

A2xdisill — A2y 4 T2 r _ 4
K K xl (1 + V)2 ( )

The signal variance can be decreased or even the squeezing

recovered by minimizing the second term. The probability
v and the displacement X; are parameters of the noisy
process and thus cannot be altered in the distillation opti-
mization. However, through the choice of the threshold
value py,, the ratio between the filter functions r can be
controlled to yield efficient distillation, corresponding to
r— oo orr— 0.

Our experiment for the distillation of corrupted
squeezed states consists of three parts (Fig. 1): preparation,
distillation, and verification. We observe the squeezing of
sidebands at 17.5 = 0.5 MHz relative to the optical carrier
frequency to avoid technical noise. The preparation of the
mixed state of Eq. (1) is accomplished by combining a
squeezer with a controllable noise source. We use a polar-
ization squeezer exploiting the Kerr nonlinearity experi-
enced by ultrashort laser pulses in optical fibers [8]. Using
a birefringent fiber, two quadrature squeezed states can be
simultaneously and independently generated. Stable over-
lap of these pulses allows us to generate Stokes parameter
squeezing. Considering the “dark’ Stokes plane (S; — S5)
orthogonal to the classical excitation (S3), it is found that
the polarization squeezing observed in this mode is mathe-
matically equivalent to quadrature vacuum squeezing
[8,9]. We treat the two synonymously. The classical exci-
tation can then be thought of as a perfectly matched local
oscillator. From this source we observed AZXSq =-31=x
0.3 dB relative to the quantum noise level. The anti-
squeezed quadrature contains the large excess phase noise
characteristic of pulse propagation in glass fibers, AQPSq =
+27 = 0.3 dB. These noise signals are observed using
balanced detector pairs with 85% quantum efficiency.

The non-Gaussian noise source is implemented by ex-
ecuting a fixed phase space displacement of the squeezed
state with a probability v = 0.5. The displacement is gen-
erated by a phase modulation in one of the linear polariza-
tion modes at the fiber input using an electro-optic
modulator at 17.5 MHz. This produces a corresponding
displacement along the S, polarization after the fiber
(Fig. 2, inset). The modulation depth governs the amount
of phase space displacement. The noise source is then
simulated by periodically switching the phase modulation
on and off, toggling the displacement from maximum to
zero at a frequency of 500 kHz [13].

This non-Gaussian state, with A2X = +1.4 + 0.3 dB, is
fed into the distiller. It consists of two operations: (i) the
tap measurement of a certain quadrature on a small portion
of the beam and (ii) the signal postselection conditioned on
the tap measurement. The latter could be implemented
electro-optically to probabilistically generate a freely prop-
agating distilled signal state. To avoid such complications,
our conditioning is instead based on data postselection
using a verification measurement. The tap and the signal
are recorded simultaneously, yielding data pairs, and the
signal is selected dependent on the tap value. These mea-
surements are implemented as Stokes measurements in the
“dark” plane. For a circularly polarized beam the rotation
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FIG. 2 (color online). Experimentally measured marginal dis-
tributions, centered at zero for convenience, outlining the dis-
tillation of a squeezed state from a non-Gaussian mixture of
squeezed states: (a) tap measurement p,, (b) signal measurement
x,. Inset: phase space representation of the mixed state and the
projection axes used in the measurements.

of a half-wave plate introduces a relative phase shift be-
tween the right-hand circular polarization (squeezed state)
and the left-hand circular polarization (local oscillator)
when observing the difference signal after a polarization
beam splitter [8].

The rf currents of the photodetectors are mixed with an
electronic local oscillator at 17.5 MHz and digitized with
an analog/digital converter at 107 samples per second with
a 16 bit resolution. Each state of the electromagnetic field
is recorded in a 1 ws time window. By digital filtering and
averaging over 1 us time bins we derive a photocurrent
value for each bin. In this process the 1 us time bins of our
signal are synchronized to the modulator switching period,
such that each bin is recorded entirely during an “on’” or an
“off” period. Thus by measuring the antisqueezed quad-
rature in the tap on an ensemble of identically prepared
noisy states we construct the distributions in Fig. 2(a). The
simultaneous measurement of the signal beam recorded the
orthogonal, squeezed quadrature. The modulation was
chosen such that the variance of the noisy signal was just
greater than that of the shot noise [Fig. 2(b)]. Performing
postselection on this data by conditioning it on the tap
measurement, we observe a recovery of the squeezing.
That is, the distilled signal distribution is narrower than
that of the shot noise [Fig. 2(b)]. We measured AP, =
+17.5 = 0.3 dB relative to the shot noise. Conditioning on
the tap, the noisy signal variance, +1.1 = 0.3 dB, fell to
—2.6 = 0.3 dB.

Using the data shown in Fig. 2, the distilled signal
variance was investigated as a function of the postselection
threshold. In Fig. 3 we notice that an increasing threshold
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FIG. 3. Experimentally and theoretically distilled squeezing
(left) and success probability (right) as a function of postselec-
tion threshold for two displacements. The threshold is given
relative the center of the marginal distributions.

decreases the signal variance, ultimately approaching the
input squeezing. This agrees well with the exponential
increase in squeezing predicted by Eq. (4), given by the
dashed line. As the threshold increases, the success proba-
bility or amount of distilled data decreases to zero causing
an increase in the statistical error on the variance [14].
Thus a compromise between the postselected variance and
probability of success must be made.

The effectiveness of a given threshold depends on (i) the
projection of the displacement onto the measured quad-
rature and (ii) the variance of the measured quadrature
(Fig. 4). The measured tap quadrature was rotated by an
angle S (see Fig. 2), effectively changing the displacement.
We observe the best distillation for small angles where the
displacement (¥, — X;) to threshold (pg) difference is
largest. It is seen that the quality of the distillation de-
creases with increasing S as the projection of the displace-
ment onto the measured quadrature increases. The Wigner
function of both the mixed and the distilled states was
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FIG. 4 (color online). Distilled variance (left axis) and success
probability (right axis) as a function of the quadrature angle
relative to the squeezed quadrature (defined in Fig. 2) in the tap
measurement for a postselection threshold of 5.3 shot noise units.
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FIG. 5. Density plots of the Wigner function distributions for
(a) the non-Gaussian mixed state and (b) the Wigner function of
the corresponding distilled state. The Wigner function was
reconstructed using the inverse Radon transform [16]. The shift
to the right reflects the postselection process as well as the
renormalization of the distilled data. To aid visualization the
plots have been vertically rescaled by a factor of two.

recovered by measuring all quadratures in the verification
station for a constant tap measurement. Density plots of
both Wigner functions is shown in Fig. 5.

We now theoretically generalize the experiment to con-
tinuously distributed noise. First we consider a top hat
distribution of displaced squeezed vacuum states (a direct
extension of the experiment). Using the experimental pa-
rameters we find a noisy signal of A2X = 0.71 which is
successfully distilled to A2x%istll = (0,64 with a probability
IT = 0.15. Further, we investigate the effects of a fading
channel on (i) vacuum and (ii) displaced squeezed states.
This noise source is described by a log-Gaussian distrib-
uted attenuation factor characterized by exp—Z [7]. We
used a fading channel where the Gaussian distributed Z
was described by, for example, (Z) = 0.4 and A’Z =
0.028 (corresponding to strong turbulence) which we trun-
cated above zero attenuation to avoid amplification during
transmission. Using the same parameters we distill the
squeezed variance such that 0.75 — 0.64 and 0.81 —
0.74 with IT = 0.002 and 0.078, respectively. We observe
successful distillation independent of the attenuation factor
distribution and find that higher thresholds lead to im-
proved distillation, highlighting the versatility of our pro-
tocol in realistic applications [15].

We have successfully experimentally demonstrated the
probabilistic distillation of continuous variable nonclassi-
cal states from a non-Gaussian mixture of squeezed states.
This was accomplished by the thorough investigation of a
specific source of discrete non-Gaussian noise, namely, a
phase space linear shift. The methods presented here were
also theoretically shown to be successful for other non-
Gaussian noise sources, particularly continuous phase
space displacements and attenuations, the subject of future
experiments. Another extension of this work would be to
perform a conditional optical operation, i.e., phase shift or
displacement, on the signal beam. Thus not only the dis-
tillation demonstrated here but also a purification of the
excess noise of the initially squeezed states could be im-
plemented, generating an even purer nonclassical resource

than produced here. Whilst we have focused on single-
mode squeezed states, these techniques can assuredly be
extended to two-mode squeezed systems. This means that
continuous variable entanglement distillation is possible
using local Gaussian operations and classical communica-
tion if the two-mode squeezing is corrupted by non-
Gaussian noise.
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