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We argue that an expanding quark-gluon plasma has an anomalous viscosity, which arises from
interactions with dynamically generated color fields. We derive an expression for the anomalous viscosity
in the turbulent plasma domain and apply it to the hydrodynamic expansion phase, when the quark-gluon
plasma is near equilibrium. The anomalous viscosity dominates over the collisional viscosity for weak
coupling and not too late times. This effect may provide an explanation for the apparent ‘‘nearly perfect’’
liquidity of the matter produced in nuclear collisions at the Relativistic Heavy Ion Collider without the
assumption that it is a strongly coupled state.
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Measurements of the anisotropic collective flow of had-
rons emitted in noncentral collisions of heavy nuclei at the
Relativistic Heavy Ion Collider (RHIC) are in remarkably
good agreement with the predictions of ideal relativistic
fluid dynamics [1]. In order to describe the data, calcula-
tions need to assume that the matter formed in the nuclear
collision reaches thermal equilibrium within a time �i <
1 fm=c [2] and then expands with a very small shear vis-
cosity �� s, where s is the entropy density [3]. The com-
parison between data and calculations indicates that the
viscosity of the matter cannot be much larger than the pos-
tulated lower bound �min � s=4� [4], which is reached in
certain strongly coupled supersymmetric gauge theories
[5].

This result is nontrivial because the shear viscosity of a
weakly coupled, perturbative quark-gluon plasma is not
small. In fact, the perturbative result for the shear viscosity,
in leading logarithmic approximation, is [6]

 �C �
dfT3

g4 lng�1 ; (1)

where df �O�100� is a numerically determined constant
that weakly depends on the number of quark flavors nf.
The result (1), as well as the finding that numerical solu-
tions of the Boltzmann equation exhibit fluid dynamical
behavior only when the cross section between gluons is
artificially increased by a large factor [7], have invited
speculations that the matter produced at RHIC is a strongly
coupled quark-gluon plasma. The possible microscopic
structure of such a state is not well understood at present
[8–10].

Here we present an alternative mechanism that may be
responsible for a small viscosity of a weakly coupled but
expanding quark-gluon plasma. The new mechanism is
based on the theory of particle transport in turbulent plas-
mas [11,12]. Such plasmas are characterized by strongly
excited random field modes in certain regimes of instabil-
ity, which coherently scatter the charged particles and,
thus, reduce the rate of momentum transport. The scatter-

ing by turbulent fields in electromagnetic plasmas is known
to greatly increase the energy loss of charged particles [13]
and reduce the heat conductivity [14,15] and the viscosity
[16,17] of the plasma. Following Abe and Niu [17], we call
the contribution from turbulent fields to transport coeffi-
cients ‘‘anomalous.’’

The sufficient condition for the spontaneous formation
of turbulent, partially coherent fields is the presence of
instabilities in the gauge field due to the presence of
charged particles. This condition is met in electromagnetic
plasmas with an anisotropic momentum distribution of the
charged particles [18], and it is known to be satisfied in
quark-gluon plasmas with an anisotropic momentum dis-
tribution of thermal partons [19–21].

Most of the work exploring the consequences of the
instabilities [22–24] has been focused on the early stage
of the collision, when the momentum distribution is highly
anisotropic and far from equilibrium. It was pointed out
that the fields generated by the instabilities will drive the
parton distribution rapidly toward local isotropy and, thus,
into the hydrodynamical regime [25]. Here we are con-
cerned with the later stage of the reaction, when the matter
is nearly equilibrated and evolves by hydrodynamical ex-
pansion. Because the partonic plasma expands rapidly, the
momentum distribution of the partons remains anisotropic
even at late times, with the size of the anisotropy being
proportional to the viscosity.

As we will show, the turbulent plasma fields induce an
additional, anomalous contribution to the viscosity, which
we denote as �A. This anomalous viscosity decreases with
increasing strength of the turbulent fields. Since the am-
plitude of the turbulent fields grows with the magnitude of
the momentum anisotropy, a large anisotropy will lead to a
small value of �A. Because the relaxation rates due to
different processes are additive, the total viscosity is given
by

 ��1 � ��1
A � �

�1
C : (2)

This equation implies that �A dominates the total shear
viscosity, if it is smaller than �C. In that limit, the anoma-
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lous mechanism exhibits a stable equilibrium in which the
viscosity regulates itself: The anisotropy grows with �, but
an increased anisotropy tends to suppress �A and, thus,
� � �A. We derive the resulting self-consistency condi-
tion for �A below.

The fireballs formed in relativistic heavy-ion collisions
exhibit collective expansion in both the longitudinal and
the transverse directions with respect to the beam axis.
Here we focus on the longitudinal expansion, but our argu-
ments apply as well to the transverse expansion compo-
nent. We assume the longitudinal flow profile during the
hydrodynamic expansion phase of a relativistic heavy-ion
collision to be approximately boost invariant [26] and of
the form uz�z; t� � z=t, where z and t are measured from
the collision point in the center-of-mass frame. The veloc-
ity gradient @uz=@z leads to an anisotropy in the local
momentum distribution [3,27]

 

2Tzz
Txx � Tyy

� 1 � �
8

T�
�
s
; (3)

where T denotes the temperature, s is the entropy density

of the matter, and � �
���������������
t2 � z2

p
is the time in local comov-

ing coordinates. For simplicity, we have assumed that the
equation of state of the matter is that of free massless
partons, � � 3P � 3sT=4. As (3) shows, the anisotropy
is linearly dependent on the viscosity of the matter.

As already mentioned, any anisotropy of the local mo-
mentum distribution of quasithermal partons engenders
instabilities of soft gluon modes in the momentum regime
k < gT, whose growth rate increases in proportion to the
anisotropy [21]. In electromagnetic plasmas, the growth of
the instability eventually saturates when the increasing
field modifies the particle distribution in such a way that
the instability is eliminated. In non-Abelian plasmas, the
nonlinear self-interactions of the gauge field restrict the
growth of the unstable modes; this mechanism dominates
at weak coupling [28–30]. In the quasistationary state that
is reached in the nonlinear domain, energy absorbed from
the thermal partons cascades from the most unstable gauge
field modes into modes of increasingly shorter wave-
lengths. The power spectrum of this energy cascade has
the form P�k� � k�2, analogous to the Kolmogorov cas-
cade in a turbulent fluid [31].

As already stated, we are concerned here with the effect
of the unstable field modes on the transport properties of
the medium when it has reached the collective expansion
phase. Following the standard Chapman-Enskog theory of
transport coefficients, we assume that the plasma is driven
only slightly out of equilibrium by the collective flow and
that the local phase-space distribution can be written as

 f�p; r� � f0�p�f1� f1�p; r�	1
 f0�p��g; (4)

where f0�p� is the local equilibrium distribution, � (�)
applies to bosons (fermions), and f1 has the form

 f1�p; r� � �
��

2ET2 pipj�ij�u�: (5)

Here �ij�u� � �riuj �rjui �
2
3�ijr � u� is the traceless

part of the flow gradient related to the shear viscosity, and
�� parametrizes the strength of the anisotropy. For massless
particles, �� is related to the macroscopic transport coeffi-
cient of shear viscosity by �� � 5�=s. The boost invariant
longitudinal expansion corresponds to the perturbation

 f1�p� � �
��

3ET2�
�3p2

z � p
2�: (6)

In order to explore the response of the plasma to this
perturbation, we need to determine the influence of the
saturated field modes on the propagation of thermal plasma
particles. The relevant transport theory was developed by
Dupree [11,12] for an electromagnetic plasma in the limit
of strong turbulence and weak coupling. We now general-
ize this formalism to a non-Abelian plasma. Our starting
point is the Vlasov-Boltzmann equation for the phase-
space distribution of color charges Qa in a color-magnetic
field Ba:

 

�
@
@t
� v � rr � F � rp

�
f�r;p; t� � C	f�; (7)

where v � p=E is the velocity of a thermal parton with
momentum p and energy E, F � gQa�Ea � v Ba� is the
color Lorentz force, and C	f� denotes the collision term.
We focus here on the effects of the Vlasov term and refer to
the results of Arnold, Moore, and Yaffe [6] for the viscosity
due to incoherent collisions. Because transverse field
modes have the highest growth rates in the linear regime
and transverse color-electric fields are less effective in
restoring the particle distribution to isotropy, we concen-
trate here on the effects due to coherent color-magnetic
field modes. The effects of longitudinal electric field
modes, which are strongly excited in the nonlinear domain
and can also lead to isotropy, will be discussed in a forth-
coming longer publication [32].

In order to isolate the dissipative effects of the color
field, one averages the particle trajectories over an en-
semble of color-magnetic fields. Assuming that hBai � 0
and factorizing higher than second moments of the field
distribution, one can then show that the ensemble averaged
phase-space distribution �f satisfies an equation of the
Fokker-Planck type [11]:

 

�
@
@t
� v � rr � rpD�p; t�rp

�
�f � C	 �f�; (8)

with the diffusion tensor

 Dij �
Z t

�1
dt0hFi� �r�t0�; t0�Fj� �r�t�; t�i: (9)

Dupree’s treatment [11] is based on the argument that the
Fourier components of the coherent field B�k;!k� are
slowly varying functions, and the autocorrelation function
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of the Lorentz force in (9) is determined by the action of
the magnetic field on the particle trajectories. This leads to
a self-consistency condition for the mean deviation h��r2i
of the particle trajectories from straight lines. Because the
growth and coherence of the non-Abelian gauge field (at
weak coupling) is not controlled by the backreaction of the
distorted particle trajectories on the gauge field, but by the
inherent nonlinearities of the gauge field itself [23], we
adopt here a different approach. The velocity of propaga-
tion of the collective modes of the non-Abelian plasma is
less than the speed of light, while the thermal particles
move (nearly) at the speed of light. The autocorrelation
function of the color-magnetic field along the path of a
particle will, thus, be controlled by the spatial correlation
length of the fields created by the growth of the unstable
modes. Assuming that the correlation length for the color-
magnetic fields is short in comparison with the curvature
radius of the trajectory of a plasma particle, we can then
take �v�t� � �v�t0� � v out of the average in (9) and are left
with the autocorrelation function of the magnetic field
along a typical particle trajectory:

 

Z t

�1
dt0hBai �t

0�Bbj �t�i � hB
a
i B

b
j i�m: (10)

In our case, the color-magnetic fields generated by the
plasma instability point in a transverse direction with
respect to the beam. Assuming that the ensemble average
is diagonal in color and employing the notation L�p� �
�ip rp, we can write the diffusive term as

 r pD�p�rp � �
g2Q2

2�N2
c � 1�E2 hB

2i�m�L
�p�
? �

2; (11)

where Nc � 3 is the number of colors and the index ?
denotes the components transverse to the beam axis.

The action of the diffusion operator on �f is evaluated
easily by noting that the perturbation f1�p� has quadrupole
form. In order to derive the anomalous viscosity due to the
diffusion term, we follow Abe and Niu [17] and take mo-
ments of the drift and diffusion terms in (8) with p2

z . Using
massless quarks and gluons in the momentum integrals, we
obtain:

 

Z d3p

�2��3E
p2
zv � rr �f�p� �

1

T�
16�4��4�

15�2 T5; (12)

 

Z d3p

�2��3E
p2
zrpD�p�rp �f�p� �

1

T�

��g2hB2i�m

�N2
c � 1�


4Nc�

0
2��2�

15�2 T2; (13)

where

 �N � 16� 12�1� 2�N�nf; (14)

 �0N � 16� 6�1� 2�N�nf�N
2
c � 1�=N2

c ; (15)

and we have used Q2 � Nc for gluons and Q2 � �N2
c �

1�=�2Nc� for quarks. Equating the two results and using the
relation �� � 5�=s, we obtain the sought after expression
for the anomalous shear viscosity due to the coherent
color-magnetic fields:

 �A �
4�N2

c � 1��4��4�
5Nc�

0
2��2�

sT3

g2hB2i�m

: (16)

It is noteworthy that the right-hand side of (16) itself
depends implicitly on the viscosity, because the intensity
of the turbulent fields grows with increasing anisotropy of
the momentum distribution in the plasma.

Next, we need to address the question how large hB2i
and �m are. The coherent color-magnetic fields are only
generated by the plasma instability when the momentum
distribution of partons in the quark-gluon plasma is de-
formed due to the collective expansion. We know from
analytical studies how the growth rate of the instability
depends on the anisotropy of the momentum distribution,
but there are no published systematic studies that show
how the saturation level of the coherent field energy de-
pends on the anisotropy.

The study by Romatschke and Strickland [21] expresses
the anisotropy in terms of a parameter � and a unit vector n̂.
Choosing n̂ � êz, this ansatz corresponds to a perturbation
of the equilibrium distribution of the form (6) with �� �
�T�=2. The average intensity of the coherent color-
magnetic fields is a function of the momentum anisotropy.
For lack of a precise knowledge of this function, we here
parametrize it as a power law: g2hB2i � b0g4T4�b1 , and
conjecture a linear dependence (b1 � 1). We argued above
that the scale for the memory time �m for the non-Abelian
plasma will be set by the spatial coherence length of the
coherent fields. This coherence length is given by the
wavelength of the maximally unstable mode, which is of
the order of the Debye length: �m �	�1

D � �gT�
�1, where

the last form assumes weak coupling. We currently lack a
precise determination of �m, which could be obtained from
numerical solutions of the Yang-Mills equations for the
anisotropy discussed here.

Using the relations between �, ��, and �, we can now
state the dependence of the right-hand side of (16) on the
viscosity:

 g2hB2i�m � 10b0g3 T
2�
s�

: (17)

Note that � here is the viscosity due to all sources of
dissipation, including collisions. If we neglect the viscosity
�C due to particle collisions and set � � �A on the right-
hand side of (17), Eq. (16) yields a self-consistency con-
dition for the anomalous viscosity �A, which has the
solution:

 �A �

�
2�N2

c � 1��4��4�T�
25b0Nc�02��2�

�
1=2 s

g3=2
: (18)
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Several things are notable about this result. First, if the
memory time �m is longer than our estimate, the value of
�A decreases. Second, the dependence of �A on the gauge
coupling is parametrically much weaker than that of the
collisional viscosity (1). Thus, for weak coupling g� 1
and not too late times �, the anomalous viscosity will be
much smaller than the collisional viscosity. According to
(2), this implies that �A is dominant at early times, and the
collisional viscosity �C may dominate at large times. The
crossover time �c between the two regimes is given by
the condition �A � �C. Because of the failure of the
perturbative result for �C in the domain g � 1, it is diffi-
cult to give a reliable estimate of the crossover time be-
tween the two regimes. Ignoring those limitations and
assuming b0 �O�1�, one can surmise that the anomalous
viscosity dominate for a few fm=c in heavy-ion collisions
at RHIC or LHC energies. At late times, the transverse
expansion of the medium also needs to be taken into
account. Assuming a radial dependence of the form
ur�r� � 
0r=R, where R is the nuclear radius, the anisot-
ropy due to transverse flow is

 pipj�ij�u� � �
2
0

3R
�3p2

z � p2�: (19)

Comparing with (6), one sees that the effects from the
radial expansion become comparable to those from the
longitudinal expansion when 
0 � R=�. The anomalous
contribution to the viscosity may, therefore, never be neg-
ligible during the lifetime of the plasma phase. We note
that collisions among thermal particles may suppress the
Weibel instability when the coupling constant �s exceeds a
threshold value [33]. It is presently unknown whether this
occurs before or after the crossover between �A and �C for
experimentally relevant conditions.

The approach outlined here can be used to derive other
anomalous transport properties of an expanding, turbulent
quark-gluon plasma. Maybe the most important among
these are the coefficient q̂ of radiative energy loss of an
energetic parton [34], which might be increased by scat-
tering on turbulent fields.

In summary, we have shown that an expanding quark-
gluon plasma acquires an anomalous viscosity due to the
interaction of thermal partons with chromomagnetic fields
generated by instabilities of soft field modes. In the weak
coupling limit, the anomalous viscosity is much smaller
than the viscosity due to collisions among thermal partons.
By reducing the shear viscosity of a weakly coupled but
expanding quark-gluon plasma, this mechanism could pos-
sibly explain the observations of the RHIC experiments
without the assumption of a strongly coupled plasma state.
A definitive answer will require the numerical evaluation
of the correlation function (10) as a function of the anisot-
ropy parameter ��.
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