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We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials
(favored by cosmological observations) and single out 16 classes of possible regular configurations with
flat, de Sitter, and anti–de Sitter asymptotics. Among them are traversable wormholes, bouncing
Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a
Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a
hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in
a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing
the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations
include k-essence type scalar fields (with a potential) and scalar-tensor gravity.
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Observations provide more and more evidence that the
modern accelerated expansion of our Universe is governed
by a peculiar kind of matter, called dark energy (DE),
characterized by negative values of the pressure to density
ratio w. By current estimates, even w<�1 seems rather
likely [1–6], though many estimates are model dependent.
Thus, assuming a perfect-fluid DE withw � const implies,
using combined data from CMB, type Ia supernovae, and
large-scale structure, �1:39<w<�0:79 at 2� level [4].
Similar values are obtained assuming a perfect fluid with
variable w [1,2]. A model-independent study [5] of data
sets from 172 SNIa showed a preferable range �1:2<
w<�1 for the recent epoch. An analysis of the Chandra
telescope observations of hot gas in 26 x-ray luminous
dynamically relaxed galaxy clusters [6] gives w �
�1:20�0:24

�0:28.
Moreover, a highly negative w makes negligible the

undesirable DE contribution to the total energy density in
the period of structure formation. Thus, even if the cosmo-
logical constant, giving precisely w � �1, is still admitted
by observations as possible DE, there is a need for a more
general framework allowing w<�1.

The perfect-fluid description of DE is plagued with
instability at small scales due to imaginary velocity of
sound; more consistent descriptions providing w<�1
use self-interacting scalar fields with negative kinetic en-
ergy (phantom scalars) or tachyonic fields [7–9] (see also
references therein). To avoid the obvious quantum insta-
bility, a phantom scalar may perhaps be regarded as an
effective field description following from an underlying
theory with positive energies [10]. Curiously, a classical
massless phantom field even shows a more stable behavior
than its usual counterpart [11,12]. A fundamental origin of
phantom fields is under discussion, but they naturally
appear in some models of string theory [7], supergravities

[13], and theories in more than 11 dimensions like F theory
[14].

If a phantom scalar, be it basic or effective, is part of the
real field content of our Universe, it is natural to seek its
manifestations not only in cosmology but also in local
phenomena, in particular, in black hole (BH) physics, as,
e.g., in the recent works on DE accretion onto BHs [15,16]
and BH interaction with a phantom shell [17].

We here try to find out which kinds of regular static,
spherically symmetric configurations may be formed by a
phantom scalar field itself. Since it violates the usual
energy conditions, regular solutions of interest for BH
physics and/or cosmology are expected. Our main finding
is, in our view, the existence of regular asymptotically flat
BH solutions with an expanding, asymptotically de Sitter
Kantowski-Sachs (KS) cosmology beyond the event hori-
zon. It is, to our knowledge, quite a new way of avoiding a
BH singularity, alternative to the known type of regular BH
solutions which possess a regular center [see, e.g., [18–
20] ].

After writing the field equations, we will mention some
no-go theorems for both normal and phantom scalars
(without proofs), making sure that they leave sufficient
freedom for solutions of interest. Then follows a simple
qualitative analysis which reveals 16 classes of possible
nonsingular solutions and the properties of potentials
needed for their existence. Using the inverse problem
method, we construct simple explicit examples, including,
among others, regular bouncing KS cosmologies and regu-
lar black holes, asymptotically flat or anti–de Sitter (AdS)
in the static (R) region and asymptotically de Sitter in the
nonstatic (T) region. Some generalizations of these results
are indicated in conclusion.

We start with the action for a self-gravitating scalar field
with an arbitrary potential V���
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 S �
Z ���

g
p
d4x�R� "g��@��@��� 2V����; (1)

where R is the scalar curvature, " � �1 corresponds to a
usual scalar field with positive kinetic energy, and " � �1
to a phantom field. For the general static, spherically
symmetric metric

 ds2 � A���dt2 �
d�2

A���
� r2����d�2 � sin2d’2�; (2)

and � � ����, the scalar field equation and three inde-
pendent combinations of the Einstein equations read

 �Ar2�0�0 � "r2dV=d�; (3)

 �A0r2�0 � �2r2V; (4)

 2r00=r � �"�02; (5)

 A�r2�00 � r2A00 � 2; (6)

where the prime denotes d=d�. Equation (3) follows from
(4)–(6), which, given a potential V���, form a determined
set of equations for the unknowns r���, A���, ����.
Equation (6) can be integrated giving

 B0 � �A=r2�0 � 2��0 � ��=r
4; (7)

where B��� � A=r2 and �0 is an integration constant.
The coordinate � is chosen so that Killing horizons, if

any, correspond to regular zeros of the function
A���: A��� 	 ��� �h�p, where p 2 N is the order of
the horizon [11]. The metric is static where A���> 0 (in
R regions), while where A< 0 (in T regions) � is a time
coordinate, and (2) describes a homogeneous anisotropic
KS cosmology.

Some general consequences of Eqs. (3)–(5) (no-go the-
orems) constrain the nature of possible solutions. (A) For
" � �1 one cannot obtain wormholes or configurations
ending with a regular 3-cylinder of finite radius r [21]. This
result follows from Eq. (5) (giving r00 
 0) and is valid
independently of the large r behavior of the metric—flat,
AdS, or any other. For phantom fields Eq. (5) gives r00 � 0,
and such a restriction is absent. Thus, for a free massless
phantom field wormhole solutions are well known since
the ’70s [22,23]. (B) Particlelike (or starlike) solutions
(PLS), i.e., asymptotically flat solutions with a regular
center, are not excluded for both kinds of scalar fields but
under certain constraints on the potential. Thus, for " �
�1, PLS cannot be obtained with V��� � 0 [24]. For " �
�1, on the contrary, no PLS exist if V��� 
 0.
(C) Numerous no-hair theorems for " � �1 [see, e.g.,
the reviews [25–27] and references therein] restrict the
shape and sign of V��� with which BH metrics may ap-
pear as solutions to Eqs. (4)–(6) but do not entirely rule out
their existence. The same is true for phantom fields.
(D) Equation (7) severely restricts the possible dispositions

of Killing horizons in the resulting metric and conse-
quently the global causal structure of space-time [21].

Indeed, horizons are regular zeros of A��� and hence
B���. By (7), B��� increases at � < �0, has a maximum at
� � �0, and decreases at � > �0. It can have at most two
simple zeros, bounding a range B> 0 (R region), or one
double zero and two T regions around. It can certainly have
a single simple zero or no zeros at all.

So the choice of possible types of global causal structure
is precisely the same as for the general Schwarzschild–
de Sitter solution with arbitrary mass and cosmological
constant.

Equation (6) does not contain ", hence this result [the
Global Structure Theorem [21] ] equally applies to normal
and phantom fields. It holds for any sign and shape of V���
and under any assumptions on the asymptotics. BHs with
scalar hair (respecting the no-hair theorems) are not ex-
cluded. Examples of (singular) BHs with both normal
[e.g., [28–30] ] and phantom [31] scalar hair are known.
However, BHs with a regular center are ruled out since
their existence requires a minimum of B���.

The Hawking temperature of a horizon � � h is deter-
mined [32] as TH � �=�2��, where � is the surface gravity
at � � h. In our system, by (7),

 � � jA0�h�j=2 and A0�h� � 2��0 � h�=r
2�h�: (8)

Let us determine the possible kinds of nonsingular so-
lutions without restricting the shape of V���. Assuming no
pathology at intermediate �, regularity is provided by the
system behavior at the ends of the � range. The latter may
be classified as a regular infinity �r! 1�, which may be
flat, de Sitter, or AdS (other possible variants, like r2 � �,
are of lesser interest), a regular center, and the intermediate
case r! r0 > 0. Any oscillatory behavior of r��� is ruled
out by the constant sign of r00.

Suppose we have a regular infinity as �! 1, so that
V ! V� � const while the metric becomes Minkowski
(M), de Sitter (dS), or AdS according to the sign of V�.
In all cases r 	 � at large �.

For " � �1, due to r00 
 0, r! 0 at some � � �c,
which means a center, and the only possible regular solu-
tions have a regular center and an AdS, flat, or dS asymp-
totic; in the latter case, the causal structure coincides with
that of de Sitter space time.

For " � �1, there exist similar solutions with �c < � <
1 and a regular center. However, due to r00 � 0, there are
also others, in which � 2 R and either r! r0 � const> 0
or r! 1 as �! �1. All kinds of regular behavior are
thus possible at the ‘‘negative’’ end. In particular, if r!
r0, we get A 	 ��2=r2

0, i.e., a T region comprising a
highly anisotropic KS cosmology with one scale factor
(r) tending to a constant while the other (A) inflates. The
scalar field tends to a constant, while V��� ! 1=r2

0.
Thus there are three kinds of regular asymptotics at one

end, �! 1 (M, dS, AdS), and four at the other, �! �1:
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the same three plus r! r0, simply r0 for short. (The
asymmetry has appeared since we did not allow r!
const as �! 1. The inequality r00 > 0 forbids nontrivial
solutions with two such r0 asymptotics.) This makes nine
combinations shown in Table I. Moreover, each of the two
cases labeled KS actually comprises three types of solu-
tions according to the properties of A���: there can be two
simple horizons, one double horizon, or no horizons be-
tween two dS asymptotics. Recalling 3 kinds of solutions
with a regular center, we obtain as many as 16 qualitatively
different classes of globally regular configurations of phan-
tom scalar fields.

Examples of each behavior may be found in an algo-
rithmic manner by properly choosing the function r��� and
invoking the inverse problem method: B��� and A��� are
then obtained from Eq. (7) [and B��� always behaves as
described above]; after that ���� is yielded by Eq. (5) and
V��� by Eq. (4). A critical requirement is that r��� must
satisfy the inequality r00 
 0 for " � 1 and r00 � 0 for " �
�1. The function V��� is restored from known V��� and
���� provided the latter is monotonic, which is the case if
everywhere r00 � 0.

The potential V tends to a constant and, moreover,
dV=d�! 0 at each end of the � range. Therefore, any
model from the above classes requires a potential with at
least two zero-slope points (not necessarily extrema) at
different values of �. Suitable potentials are, e.g., V �
V0cos2��=�0� and the Mexican hat potential V � �	=4��
��2 � 
2�2 where V0,�0, 	,
 are constants. A flat infinity
certainly requires V� � 0, while a de Sitter asymptotic can
correspond to a maximum of V since phantom fields tend
to climbing up the slope of the potential rather than rolling
down, as is evident from Eq. (3). Accordingly, Faraoni [9],
considering spatially flat isotropic phantom cosmologies,
has shown that if V��� is bounded above by V0 � const>
0, the de Sitter solution is a global attractor. Very prob-
ably this conclusion extends to KS cosmologies after
isotropization.

We will now give a transparent analytic example, leav-
ing for the future more elaborated models with better
motivated potentials. So we put " � �1,

 r � ��2 � b2�1=2; b � const> 0; (9)

and use the inverse problem scheme. Equation (7) gives

 B��� � A���=r2���

�
c

b2 �
1

b2 � �2 �
�0

b3

�
b�

b2 � �2 � tan�1 �
b

�
; (10)

where c � const. Equations (4) and (5) then lead to ex-
pressions for ���� and V���:

 � � �
���
2
p

tan�1��=b� ��0; (11)

 V � �
c

b2

r2 � 2�2

r2 �
�0

b3

�
3b�

r2 �
r2 � 2�2

r2 tan�1 �
b

�

(12)

with r � r��� given by (9). In particular,

 B��1� � �
1

3
V��1� �

2bc� ��0

2b3 : (13)

Choosing in (11), without loss of generality, the plus sign
and �0 � 0, we obtain for V��� � :� �=

���
2
p
�:

 

V��� � �
c

b2 �3� 2cos2 �

�
�0

b3 �3 sin cos �  �3� 2cos2 ��: (14)

The solution behavior is controlled by two integration
constants: c that moves B��� up and down, and �0 showing
the maximum of B���. Both r��� and B��� are even
functions if �0 � 0; otherwise B��� loses this symmetry.

In the simplest case �0 � c � 0 we obtain the so-called
Ellis wormhole [22]: V � 0 and A � 1.

Solutions with �0 � 0 but c � 0 describe symmetric
structures: wormholes with two AdS asymptotics if c > 0
and solutions with two dS asymptotics if c < 0. If 0> c>
�1, there is an R region in the middle, bounded by two
simple horizons, at c � �1 they merge into a double
horizon, and c <�1 leads to a pure KS cosmology.

If �0 � 0, the two asymptotics are different. In solu-
tions flat at � � 1, it holds 2bc � ���0 while the
Schwarzschild mass, defined in the usual way, is m �
�0=3. According to (13), for �0 < 0 we obtain a wormhole
with m< 0 and an AdS metric at the far end, correspond-
ing to the cosmological constant V� < 0. For �0 > 0, when
V� > 0, there is a regular BH with m> 0 and a dS asymp-
totic far beyond the horizon. As any asymptotically flat BH
with a simple horizon, it has a Schwarzschild-like causal
structure, but the singularity r � 0 in the Carter-Penrose
diagram is replaced by r � 1.

The horizon radius depends on both parameters m and
b � minr��� and cannot be smaller than b, which also
plays the role of a scalar charge:  	 �=2� b=� at large
�. Since A�0� � 1� c, the throat � � 0 is located in the R
region if c >�1, i.e., if 3�m< 2b, at the horizon if
3�m � 2b and in the T region beyond it if 3�m> 2b.

Such regular BHs combine the properties of BHs, whose
main feature is a horizon, and wormholes, whose main
feature is a throat, r � rmin > 0. The above relations be-

TABLE I. Regular solutions with � 2 R for " � �1. Each
row corresponds to a certain asymptotic behavior as �! �1,
each column—to �! �1. The mark ‘‘sym’’ refers to combi-
nations obtained from others by symmetry �$ ��.

AdS M dS r0

AdS wormhole wormhole black hole black hole
M sym wormhole black hole black hole
dS sym sym KS KS
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tween m and b show (and it is probably generically true)
that if the BH mass dominates over the scalar charge, the
throat is invisible to a distant observer, and the BH looks
almost as usual in general relativity. However, a possible
BH explorer now gets a chance to survive for a new life in
an expanding KS universe.

One may also speculate that our Universe could appear
from collapse to a phantom BH in another, ‘‘mother’’
universe and undergo isotropization (e.g., due to particle
creation) soon after crossing the horizon. The KS nature of
our Universe is not excluded observationally [33] if its
isotropization had happened early enough, before the last
scattering epoch (at redshifts z * 1000). The same idea of
a Null Bang instead of a Big Bang (cosmological expan-
sion starting from a horizon rather than a singularity) was
discussed in [20] for a system with a de Sitter vacuum core
and a regular center in the R region.

Let us note in conclusion that the present analysis, which
has revealed a wealth of regular solutions including BHs, is
easily extended to more sophisticated phantom models,
e.g., to those of k-essence type. Indeed, for the scalar field
Lagrangian L � P�X� � 2V��� where X � g���;��;�

and P is an arbitrary function, Eqs. (6) and (7) remain
unchanged while the crucial inequality r00 � 0 holds if the
theory satisfies the ‘‘phantom condition’’ dP=dX < 0. k-
essence-type theories, among other merits, are known to
avoid inadmissible sound velocities and the stabilization
problem [34,35].

Other obvious generalizations are scalar-tensor theories
of gravity and, as their subclass, nonminimally coupled
scalar fields with Lagrangians including const� R�2.
Such theories are conformally related to (1), and the con-
formal factors, if well behaved, do not change the causal
and asymptotic properties of the solutions.
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