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Limit on Nonlocality in Any World in Which Communication Complexity Is Not Trivial
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Bell proved that quantum entanglement enables two spacelike separated parties to exhibit classically
impossible correlations. Even though these correlations are stronger than anything classically achievable,
they cannot be harnessed to make instantaneous (faster than light) communication possible. Yet, Popescu
and Rohrlich have shown that even stronger correlations can be defined, under which instantaneous
communication remains impossible. This raises the question: Why are the correlations achievable by
quantum mechanics not maximal among those that preserve causality? We give a partial answer to this
question by showing that slightly stronger correlations would result in a world in which communication

complexity becomes trivial.
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Entanglement can be harnessed to accomplish amazing
information processing feats. The first proof that genuinely
nonclassical behavior could be produced by quantum-
mechanical devices was given by Bell, who proved that
entanglement enables two spacelike separated parties to
exhibit correlations that are stronger than anything allowed
by classical physics [1]. Later, Clauser, Horne, Shimony,
and Holt (CHSH), inspired by the work of Bell, proposed
another inequality [2], which was easier to translate into a
feasible experiment to test local hidden-variable theories.
Their proposal fits nicely into the more modern framework
of nonlocal boxes, introduced by Popescu and Rohrlich
[[3]. Eq. (D)].

A nonlocal box (NLB) is an imaginary device that has an
input-output port at Alice’s location and another one at
Bob’s, even though Alice and Bob can be spacelike sepa-
rated. Whenever Alice feeds a bit x into her input port, she
gets a uniformly distributed random output bit a, locally
uncorrelated with anything else, including her own input
bit. The same applies to Bob, whose input and output bits
we call y and b, respectively. The “magic” appears in the
form of a correlation between the pair of outputs and the
pair of inputs: the exclusive OR (sum modulo two, denoted
“@®”’) of the outputs is always equal to the logical AND of
the inputs: a ® b = x A y. Much like the correlations that
can be established by use of quantum entanglement, this
device is atemporal: Alice gets her output as soon as she
feeds in her input, regardless of if and when Bob feeds in
his input, and vice versa. Also inspired by entanglement,
this is a one-shot device: the correlation appears only as a
result of the first pair of inputs fed in by Alice and Bob. Of
course, they can have more than one NLB at their disposal,
which is then seen as a resource [4] of a different nature
than entanglement [5].

NLBs cannot be used by Alice and Bob to signal in-
stantaneously to one another. This is because the outputs
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that can be observed are purely random from a local
perspective. In other words, NLBs are nonlocal, yet they
are causal: they cannot make an effect precede its cause in
the context of special relativity. We are interested in the
question of how well the correlation of NLBs can be
approximated by devices that follow the laws of physics.

Although originally presented differently, the CHSH
inequality can be recast in terms of imperfect NLBs. The
availability of shared entanglement allows Alice and Bob
to approximate NLBs with success probability

. ,m 2+ V2

g = cos”o y)

This can be used to test local hidden-variable theories
because it follows also from CHSH that no local realistic
(classical) theory can succeed with probability greater than
3/4 if Alice and Bob are spacelike separated. Later,
Tsirelson [6] proved the optimality of the CHSH inequal-
ity, which translates into saying that quantum mechanics
does not allow for a success probability greater than g at
the game of simulating NLBs. See also Ref. [7] for an
information-theoretic proof of the same result.

There are two questions of interest in this Letter:
(1) Considering that perfect NLBs would not violate cau-
sality, why do the laws of quantum mechanics only allow
us to implement NLBs better than anything classically
possible, yet not perfectly? (2) Why do they provide us
with an approximation of NLBs that succeeds with proba-
bility g rather than something better?

Before we can pursue this line of thought further, we
need to review briefly the field of communication complex-
ity [8—11]. Assume Alice and Bob wish to compute some
Boolean function f(x, y) of input x, known to Alice only,
and input y, known to Bob only. Their concern is to
minimize the amount of communication required between
them for Alice to learn the answer. It is clear that this task

~ 85.4%.
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cannot be accomplished without at least some communi-
cation (even if Alice and Bob share prior entanglement),
unless f(x,y) does not actually depend on y, because
otherwise instantaneous signalling would be possible.
Thus, we say that the communication complexity of f is
trivial if the problem can be solved with a single bit of
communication.

It is known that prior entanglement shared between
Alice and Bob helps sometimes but not always. Some
functions can be computed with exponentially less com-
munication than with a purely classical protocol [12].
However, other functions, such as the inner product
IP(x, y) = @D,(x; A y;), require as many bits to be commu-
nicated as the size of the input, whether or not prior
entanglement is available [13]. Surprisingly, van Dam
[14], and independently Cleve [15], proved that the avail-
ability of perfect NLBs makes the communication com-
plexity of all Boolean functions trivial. This answers the
first question above: If we take as an axiom that commu-
nication complexity should not be trivial, it had to be
impossible for quantum mechanics to provide a perfect
implementation of NLBs. Indeed, most computer scientists
would consider a world in which communication complex-
ity is trivial to be as surprising as a modern physicist would
find the violation of causality.

In order to answer the second question, we turn our
attention to the probabilistic version of communication
complexity, in which we do not require Alice to learn the
value of f(x, y) with certainty. Instead, we shall be satisfied
if she can obtain an answer that is correct with probability
bounded away from 1/2. In other words, there must exist
some real number p > 1/2 such that the probability that
Alice guesses the correct value of f(x, y) is at least p for all
pairs (x, y) of inputs. The probability is taken over possible
probabilistic behavior by Alice and Bob, as well as over the
value of random variables shared between them.

When we extend the notion of “trivial” communication
complexity to fit this probabilistic framework, the inner
product remains nontrivial according to quantum me-
chanics: Alice and Bob cannot succeed with probability
p>1/2 if they transmit less than max(3(2p — 1)
(2p — 1)*)n — 1 bits, even if they share prior entanglement
[13].

Our main theorem, stated below and proved in the rest of
the Letter, shows that the availability of NLBs, even im-
perfect, would dramatically change this picture.

Theorem I.—In any world in which it is possible, with-
out communication, to implement an approximation to the
NLB that works correctly with probability greater than
%E ~ 90.8%, every Boolean function has trivial proba-
bilistic communication complexity.

To prove this theorem, we introduce the notion of dis-
tributed computation and the notion of bias for such com-
putations. Then, we show how to amplify the natural bias
of any Boolean function by having Alice and Bob calculate

it many times and taking the majority. We determine how
imperfect a majority gate can be and still increase the bias.
Finally, we construct a majority gate with the use of NLBs,
and we determine to what extent we can allow them to be
faulty.

Definition 1. A bit c is distributed if Alice has bit a and
Bob bit b such that ¢ = a ® b.

Definition 2. A Boolean function f is distributively
computed by Alice and Bob if, given inputs x and y, they
can produce a distributed bit equal to f(x, y).

Definition 3. A Boolean function is biased if it can be
distributively computed without any communication and
with probability strictly greater than 1/2.

Lemma 1.—Provided Alice and Bob are allowed to share
random variables, all Boolean functions are biased.

Proof.—Let f be an arbitrary Boolean function and let
Alice and Bob share a uniformly distributed random vari-
able z of the same size n as Bob’s input y. Upon receiving
her input x, Alice produces a = f(x, z). Bob’s strategy is to
testif y = z. If so, he produces b = 0; if not, he produces a
uniformly distributed random bit b. In the lucky event that
y = z, the bit distributed between Alice and Bob is correct
sincea® b = f(x,z) ®0 = f(x, y). In all other cases, the
distributed bit a @ b is uniformly random. Summing
up, the distributed bit is correct with probability
wt(1—3)i=1+-5>1/2. O

Definition 4. A Boolean function has bounded bias if it
can be distributively computed without any communica-
tion and with probability bounded away from 1/2.

Remark 1.—The difference between bias and bounded
bias is that the probability of being correct in the former
case can come arbitrarily close to 1/2 as the input size
increases. In the latter case, there must be some fixed p >
1/2 such that the probability of being correct is at least p
no matter how large the inputs are.

Lemma 2.—Any Boolean function that has bounded bias
has trivial probabilistic communication complexity.

Proof.—Assume Boolean function f has bounded bias.
For all inputs x and y, Alice and Bob can produce bits a and
b, respectively, without communication, such that a ® b =
f(x, y) with probability at least p > 1/2. If Bob transmits
his single bit b to Alice, she can compute a ® b, which is
correct with bounded error probability. O

Definition 5. The nonlocal majority problem consists in
computing the distributed majority of three distributed bits.
More precisely, let Alice have bits x|, x,, x; and Bob have
Y1, ¥2, ¥3. The purpose is for Alice and Bob to compute a
and b, respectively, such that

a®b = Majx; &y, x; ® y, x3 ® y3),

where Maj(u, v, w) denotes the bit occurring the most
among u, v, and w. The computation must be achieved
without any communication between Alice and Bob.

In 1956, von Neumann proved a statement rather similar
to Lemma 3 below, albeit not in the context of distributed
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computation [16]. We sketch the proof nevertheless for the
sake of completeness.

Lemma 3.—For any g such that 5/6 < g =< 1, if Alice
and Bob can compute nonlocal majority with probability at
least g, every Boolean function has bounded bias.

Proof.—Let f be an arbitrary Boolean function, fix
Bob’s input size, and consider any p > 1/2 so that Alice
and Bob can distributively compute f with probability at
least p. We know from Lemma 1 that such a p exists
(although it can depend on the input size). Let Alice and
Bob apply their distributed computational process three
times, with independent random choices and shared ran-
dom variables each time. This produces three distributed
bits such that each of them is correct with probability at
least p. Now, let Alice and Bob compute the nonlocal
majority of these three outcomes with correctness proba-
bility at least g, which we assumed they can do. Because
the overall result will be correct either if most of the
distributed outcomes were correct and the distributed ma-
jority calculation was performed correctly, or if most of the
distributed outcomes were wrong and the distributed ma-
jority calculation was performed incorrectly, the probabil-
ity that the distributed majority as computed yields the
correct value of f is at least

h(p)=q(p*+3p*(1—p))+(1—q)Bp(1—p)*+ (1 - p)?).
Define

_l oW 1
2 2/1+36 2

It can be shown that p < h(p) < s provided 1/2 < p <s.
Because of this and the fact that /(p) is continuous over the
entire range 1/2 < p <s, iteration of the above process
can boost the probability of distributively computing the
correct answer arbitrarily close to s. This proves that f has
bounded bias because, given any fixed value of ¢ > 5/6,
we can choose an arbitrary constant ¢ < s such that 7 > 1/2
and distributively compute f with probability at least ¢,
independently of the input size. Ul

Definition 6. The nonlocal equality problem consists in
distributively deciding if three distributed bits are equal.
More precisely, let Alice have bits x;, x,, x3 and Bob have
Y1 ¥2, ¥3. The purpose is for Alice and Bob to compute a
and b, respectively, such that

§=¢g—5/6>0 and s

I ifx; @y, =x0y, =x3;0y;

a®b= {O otherwise.

The computation of a and b must be achieved without any
communication between Alice and Bob.

Lemma 4.—Nonlocal equality can be computed using
only two (perfect) nonlocal boxes.

Proof.—The goal is to obtain a and b such that:

a®b=(xX; 0y =x,0) A, ®y, =x30y3). (1)

First, Alice and Bob compute locally x' = x] & x,, y/ =

¥ ® y,, X" =%, ® x3and y’ = y, ® y;. Then (1) becomes
equivalent to (x' ® y') A (x"" @ y'") = a ® b. Hence, it is
sufficient to show how Alice and Bob can compute the
AND of the distributed bits x’ @ y’ and x” & y".

By distributivity of the AND over the exclusive OR,

(X/ %) yl) A (XI/ ® yll) — (xl A xll) ® (xl A yll) ® (.X” A yl)
® (v AY").

Using two nonlocal boxes, Alice and Bob can compute
distributed bits a’ ® b’ and a” ® b" witha’ @ b’ = x' A y"
and a" @b =x"Ay. Setting a= ' Ax")®ad ®a"
and b = (y' Ay")® b’ ® b" yields (1), as desired. O

Lemma 5.—Nonlocal majority can be computed using
only two (perfect) nonlocal boxes.

Proof.—Let x|, x,, x3 be Alice’s input and y;, y,, y3 be
Bob’s. For i € {1, 2,3}, let z; = x; ® y, be the ith distrib-
uted input bit. By virtue of Lemma 4, Alice and Bob use
their two NLBs to compute the nonlocal equality of their
inputs, yielding @ and b so that a @ b = 1 if and only if 7,
25, and z3 are equal. Finally, Alice produces o' =a & x; ®
X, ® x3 and Bob produces b’ = b & y; & y, ® ys3. Let

z=deb =@eb)®(z;®z,® )

be the distributed bit computed by this protocol. Four cases
need to be considered, depending on the number € of 1’s
among the z;’s: (1) if € =0, thena® b =1andz, ® 7, ®
73=0;2)if¢ = 1,thena®b =0andz, ® 2, ® 75 = 1;
B)if€=2,thena®b=0and z; ®z,®z3 = 0; (4) if
{=3,thena®b=1andz ®z,®z3 = 1.

We see that z = 0 in the first two cases and z = 1 in the
last two, so that z = Maj(z,, z5, z3) in all cases. O

We are now ready to prove our main theorem.

Proof of Theorem 1.—Assume NLBs can be approxi-
mated with some probability p of yielding the correct
result. Using them, we can compute nonlocal majority
with probability g = p*> + (1 — p)? since the protocol
given in the proof of Lemma 5 succeeds precisely if none
or both of the NLBs behave incorrectly. The result follows
from Lemmas 2 and 3 because ¢ >35/6 whenever
p> %. O

Corollary 1.—In any world in which probabilistic com-
munication complexity is nontrivial, nonlocal boxes can-
not be implemented without communication, even if we
are satisfied in obtaining the correct behavior with proba-
bility 28 ~ 90.8%.

Remark 2.—Neither nonlocal majority nor nonlocal
equality can be solved exactly with a single nonlocal
box. Otherwise, entanglement could approximate that
NLB well enough to solve the nonlocal majority problem
with probability g = 0.854 > 5/6 of being correct [2]. It
would follow from Lemmas 2 and 3 that all Boolean
functions have trivial probabilistic communication com-
plexity according to quantum mechanics. But we know this
not to be the case for the inner product [13].
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Remark 3.—Our results also give bounds on the maxi-
mum admissible error for purely classical fault-tolerant
computation. Suppose that we could transform any classi-
cal circuit into a fault-tolerant version that would work
with probability bounded away from 1/2 even if each gate
failed independently with probability 1/4. Assume further-
more that the fault-tolerant circuit is composed only of
unary and binary gates, henceforth called a UB-gate circuit.
In the proof of Lemma 4, we showed how to simulate
distributed AND gates by use of two NLBs. Similarly, it
is easy to see that all other UB gates can be computed
distributively with at most two NLBs. (Several gates re-
quire no NLBs at all, such as the unary NOT and binary XOR,
also known as CNOT, the controlled NOT gate.) Now, quan-
tum mechanics provides us with NLBs with correctness
probability @, which yields distributed gates that are cor-
rect with probability at least (1 — p)> + p*> = 3/4. This
allows us to use the assumed fault-tolerant circuit in a
distributed way and conclude that all Boolean functions
have bounded bias, and therefore trivial quantum probabi-
listic communication complexity. But this is impossible
since most Boolean functions, for example, the inner prod-
uct, require €)(n) bits of communication even if Alice and
Bob share entanglement and are satisfied with a probability
of correct answer bounded away from 1/2 [13]. It follows
that UB-gate fault-tolerant circuits cannot in general allow
each gate to fail with probability 1/4, even if NOT and XOR
gates are perfect. As an interesting coincidence, the best
known upper bound on the error threshold, due to Evans
and Pippenger [17], states that fault tolerance is impossible
in general for UB-gate circuits if gates fail with probability
1—p= # or worse.

In conclusion, we have shown that in any world in which
communication complexity is nontrivial, there is a bound
on how much nature can be nonlocal. This bound, which is
an improvement over previous knowledge that nonlocal
boxes could not be implemented exactly [14,15], ap-
proaches the actual bound @ = 85.4% imposed by quan-
tum mechanics. The obvious open question is to close the
gap between these probabilities. A proof that nontrivial
communication complexity forbids nonlocal boxes to be
approximated with probability greater than @ would be
very interesting, as it would render Tsirelson’s bound [6]
inevitable, making it a candidate for a new information-
theoretic axiom for quantum mechanics [18].
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