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It is demonstrated that an understanding of the 5
2 fractional quantum Hall effect can be achieved within

the composite fermion theory without appealing to the Pfaffian wave function. The residual interaction
between composite fermions plays a crucial role in establishing incompressibility at this filling factor.
This approach has the advantage of being amenable to systematic perturbative improvements, and
produces ground as well as excited states. It, however, does not relate to non-Abelian statistics in any
obvious manner.
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The 5
2 fractional quantum Hall effect (FQHE) [1,2] has

received renewed attention of late because of the intriguing
possibility of its utilization in quantum computation. The
currently most promising picture for this FQHE is in terms
of ‘‘the Pfaffian state,’’ proposed by Moore and Read [3]
and Greiter, Wen, and Wilczek [4,5]. The Pfaffian wave
function describes a real-space p-wave-paired BCS wave
function for a fixed the number of composite fermions
(CFs). The best evidence in favor of the Pfaffian state
comes from numerical studies, which have shown [6–8]
that for small systems in the second Landau level (LL), the
Pfaffian wave function has a reasonably good overlap with
the exact Coulomb ground state. The Pfaffian also is the
exact ground state for a model three-body short-range
interaction, V 3 [Eq. (2)]. Exact solutions for this model
are also available for quasiholes, which have been shown,
theoretically, to constitute a realization of ‘‘non-Abelian
anyons’’ [3,9–11].

This picture, however, is not entirely satisfactory. It is
not known how the Pfaffian wave function, which does not
contain any variational parameters, can be improved for
the two body Coulomb interaction. The pairing of com-
posite fermions is viewed as arising from an instability of
the CF Fermi sea [4,5,12], but the CF Fermi sea is not a
limiting case of the Pfaffian wave function. No satisfactory
quantitative understanding currently exists for the excita-
tions of the 5

2 state; we see evidence below that the three-
body interaction V 3 does not capture the qualitative phys-
ics of the actual excitations of the Coulomb 5

2 state. Finally,
the actual meaning of pairing of composite fermions re-
mains unclear; the 5

2 state has no off-diagonal long-range
order, and, in an operational sense, it does not appear
different from other FQHE states.

These considerations have motivated us to seek another
approach for describing the physics of the 5

2 FQHE, on
which we elaborate in this Letter. We still proceed within
the CF framework, but without assuming any pairing at the
outset. No FQHE occurs at � � 5

2 in a model that neglects
interactions between composite fermions, which predicts
many degenerate ground states at this filling factor. [This is
to be contrasted with the FQHE at � � n=�2pn� 1�.] We
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show below that the residual interaction between compos-
ite fermions opens a gap to produce an incompressible
state. Furthermore, the results can be improved systemati-
cally within a perturbative scheme. This approach pro-
duces ground state as well as low-lying excitations.

Below, the lowest LL is assumed to be full and inert;
only the half-filled second LL is considered explicitly,
and full spin polarization of electrons is assumed.
Lengths are measured in the units of the magnetic length,
lB �

��������������
@c=eB

p
, and energies in units of e2=�lB (� is the

dielectric constant of the host semiconductor). The spheri-
cal geometry [13] will be employed, which considers N
electrons moving on the surface of a sphere with a mag-
netic monopole of strength Q at the center, producing a
magnetic flux of strength 2Q�0, where �0 � hc=e is the
magnetic flux quantum. The total orbital angular momen-
tum quantum number is denoted by L.

The Pfaffian state assumes the form

 �Pf�Pf
�

1

uivj�viuj

�
�2

1; �1�
Y
i<j

�uivj�viuj�; (1)

where ui� cos�i2 e
�i�i=2 and vi� sin�i2 e

i�i=2. It is the exact
ground state of the short-range three-body interaction
[4,7,10]

 V 3 � V
X
i<j<k

Pijk�Lmax�; (2)

wherePijk�Lmax� is the projection operator onto an electron
triplet with orbital angular momentum Lmax � 3Q� 3.
V 3 penalizes configurations with electron triplets in their
closest configuration.

The CF theory [14] describes the two-dimensional elec-
tron system in terms of composite fermions, which are
electrons bound to an even number (taken to be two in
this Letter) of quantized vortices. The lowest LL splits into
‘‘� levels’’ of composite fermions, which are analogous to
Landau levels of electrons in a reduced field B� � B�
2��0. Microscopically, the CF formation is defined by the
expression

 �Q � PLLL�2
1�Q� ; (3)
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TABLE I. Dimensions of various bases for Nh particles at
2Q � 2Nh � 1. Dex is the size of the Hilbert space in the Lz �
0 sector, and D�n� is the dimension of the CF basis incorporating
nth order �-level mixing. D�n�L�0 is the number of CF states in the
L � 0 sector. Asterisks mark the cases where we could not
determine the number of linearly independent basis states.

Nh Dex D�0� D�0�L�0 D�1� D�1�L�0 D�2� D�2�L�0

6 151 3 1 14 2 42 3
8 1514 3 1 20 1 72 4

12 194 668 4 1 37 2 205 8
14 2 374 753 8 1 63 3 644* 18*
16 3	 107 4 1 52 2 495* 14*
20 5	 109 5 1 77 2 965* 18*
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where � is a wave function for N electrons at monopole
strength Q�, the Jastrow factor �2

1 attaches two vortices to
them, and PLLL projects the wave function into the lowest
LL [15]. The monopole strengths are related byQ � Q� �
N � 1.

A technical obstacle toward a quantitative study of the
state at � � 5

2 , defined here through the relation 2Q �
2N � 3, is that composite fermions experience a negative
magnetic field here, given by Q� � � 1

2 . While the CF
theory is known to be valid for negative B� [16,17], the
convenient projection method developed in Ref. [15] does
not apply to such situations for technical reasons. [The
recent work of Möller and Simon [17] can be useful in this
respect, but we have not explored that.] We avoid negative
values ofQ� by exploiting particle-hole symmetry to study
Nh � �2Q� 1� � N � N � 2 holes at 2Q � 2N � 3.
Composite fermions made from holes experience a positive
monopole strength

 Q� � Q� �Nh � 1� � 3=2: (4)

The hole version of �Pf is found conveniently from its
second-quantized form.

The single particle states at Q� are monopole harmonics
[18] YQ�lm, where l is the angular momentum and m its z
component. The LL index is given by n � l�Q� (n � 0).
Independent many-fermion basis states � are Slater deter-
minants of YQ�lm’s at Q�, specified by a set fli; mig. In the
nth order of ‘‘CF diagonalization’’[19], we collect all basis
states with at most n units of CF kinetic energy above the
minimum:

 f f��0�� g; f�
�1�
� g; f�

�2�
	 g; . . . ; f��n�
 gg:

A correlated CF basis at Q, of dimension D�n�, is obtained
through Eq. (3),

 f f��0�� g; f�
�1�
� g; f�

�2�
	 g; . . . ; f��n�
 gg;

with ni � li �Q
� now interpreted as the �-level index,

and
P
ini as the total ‘‘CF kinetic energy.’’ We diagonalize

the Coulomb interaction V in this basis. That requires a
Monte Carlo evaluation of the direct product and interac-
tion matrices (h��n�� j�

�m�
� i and h��n�� jVj�

�m�
� i, respec-

tively), orthogonalization by the standard Gram-Schmidt
procedure, and numerical diagonalization [19]. The ground
state from the nth order CF diagonalization will be denoted
by ��n�0 . The dimensions of various bases are given in
Table I.

Monte Carlo CF diagonalization requires a real-space
interaction. The Coulomb interaction of the second LL is
simulated by an effective interaction in lowest LL of the
form

 Veff�r� �
1

r
�
XM
i�0

ciri; (5)

where the coefficients ci are fixed so that the lowest LL
pseudopotentials [13] of Veff�r� reproduce all of the second
LL Coulomb pseudopotentials V�1�m for odd integral values
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of m. The Coulomb pseudopotentials in the nth LL are
given by
 

V�n�m �
1

R

Xl
m1;m2��l

	
X2l

j�jm1�m2j

��1�j�m2�m1h2l�m;0jl;m1; l;�m1i

	 h2l�m;0jl;m2; l;�m2ijhl;m1; j;m2�m1jl;m2i

	 hl;Q; j;0jl;Qij2; (6)

wherem is the relative angular momentum of two particles,
l � Q� n, and R �

����
Q
p

lB is the radius. [Equation (6) re-
duces to the expression in Fano et al. [20] for n � 0.] AsQ
depends on N, a distinct set of coefficients has to be cal-
culated for each N. To fit Eq. (5) we use that the pseudo-
potentials of a monomial rn in the lowest LL are (J �
2l�m)

 Vm�r
n� �

2n�4�2

�2Q� n=2� 1�!�2J� 1�!

	
XJ
k�0

�J!�2�J� k�!�2Q� n=2� k�!
k!�J� k�!

1

R
: (7)

Figure 1 shows the excitation spectra for Nh � 12, 14,
16, and 20 obtained by CF diagonalization at the zeroth and
the first orders. (Nh � 18 is not considered as it aliases
with � � 3=7 of holes.) The residual interaction between
composite fermions lifts the degeneracy between various
states to produce an incompressible state already at the
lowest (zeroth) order, which neglects �-level mixing.
Although the energy gaps change by up to 50% in going
from the zeroth to the first order, the incompressibility is
preserved, indicating that while �-level mixing renormal-
izes composite fermions, it does not cause any phase
transition. The overestimation of gaps at the zeroth order
may be attributed to the very small dimensions of the CF
basis. All CF basis states are perturbations of the non-
interacting CF Fermi sea, making it explicit that a re-
arrangement of composite fermions near the CF Fermi
level is responsible for the 5

2 FQHE.
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FIG. 2. First-order (left) and second-order (right) CF diago-
nalization excitation spectra for Nh�6 (top) and Nh � 8 (bot-
tom) holes. The dashes show the exact spectrum, and the dots the
CF spectrum. The exact and the CF ground state energies for
Nh � 6 are Eex=N � �0:415 217, E�1�=N � �0:413 609,
E�2�=N � �0:415 233; those for Nh � 8 are: Eex=N �
�0:401 443, E�1�=N � �0:395 293, E�2�=N � �0:399 043.
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FIG. 1. Zeroth-order (top) and first-order (bottom) CF diagonalization excitation spectra for Nh � 12; 14; 16; 20.
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When plotted as a function of klB � L=
����
Q
p

, the lowest
energy excitations for 14 
 Nh 
 20 (from the first-order
spectra) fall on a more or less continuous curve, which
indicates that the thermodynamic behavior has been ap-
proached for Nh � 14. Finite-size effects are non-
negligible for Nh < 14. For Nh > 20 the first-order calcu-
lation is not sufficient, and the second-order CF diagonal-
ization computationally too time consuming. Although
there is some ambiguity as to which excitation is to be
identified with the transport gap (corresponding to a far
separated quasiparticle-quasihole pair), the existence of an
almost flat region allows us to estimate a gap of �0:02.
This value is consistent with the earlier results from exact
diagonalization [6,21].

Figure 2 shows a comparison of the CF spectra, at first-
and second-order CF diagonalization, with the exact spec-
tra for Nh � 6 and 8. The CF theory does not provide as
accurate an account of the energies as it does for the lowest
LL FQHE states. However, it works reasonably well for
energy differences. The CF spectrum produces, at the first
order, the energy gap to better than 25% accuracy. These
comparisons thus provide credence to the semiquantitative
validity of our approach.

Of interest also is the nature of multiquasihole states a
few flux quanta away from � � 5

2 . Figure 3 shows spectra,
for the V 3 interaction, for N � 10 electrons at 2l � 18
and 2l � 19, which correspond to two and four ‘‘quasi-
holes’’ of the Pfaffian state. (We have switched back to
electrons now, as these states occur at positive B�.) This
model predicts zero energy states at L � 1; 3; 5 and L �
02; 10; 24; 31; 44; 52; 63; 71; 82; 90; 101, respectively (the
superscript denotes the degeneracy). No corresponding
quasidegenerate band of states can be identified in the
exact spectrum (middle columns). Figure 3 also shows
spectra from first-order CF diagonalization. It produces a
ground state at the correct quantum number but is not very
24680
successful for higher energy states. The CF spectrum can
be improved systematically by incorporating higher order
�-level mixing.

The lack of a qualitative correspondence between the
low-energy spectra of V 3 and the Coulomb interactions in
Fig. 3 raises questions regarding the validity of the V 3

model, and hence of the model of quasiholes based on the
Pfaffian wave function [9,10], for the real quasiholes of the
5
2 state. This has relevance to the issue of statistics. Non-
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FIG. 3 (color online). Spectra at � �
5=2 for the model interaction V 3 (left
column), the Coulomb interaction (cen-
tral column), and the first-order CF
diagonalization (right column) for N �
10 particles at 2l � 18 (top row) and
2l � 19 (bottom row). For the V 3 inter-
action, two (four) quasiholes are ex-
pected for 2l � 18 (2l � 19). The
ground state energies are E0=N �
�0:415 008 (�0:40699) for exact and
�0:40986 (�0:401 845) for composite
fermions, with 2l � 18 (2l � 19). The
energies in the middle column corre-
spond to the scale shown on right. The
spectra on the left were also given in
Ref. [10].
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Abelian statistics for the quasiholes of the V 3 model is a
consequence of the existence of several degenerate states
for a given configuration of spatially localized quasiholes,
which, in turn, is closely related to the degeneracy of the
angular momentum eigenstates in Fig. 3. The spectra in
Fig. 3 demonstrate a lack of adiabatic continuity, for the
systems studied, between the many quasihole states of the
V 3 and the Coulomb models. (For the many quasiparticle
or many quasihole states of the ordinary FQHE states in the
lowest Landau level, the qualitative structure of a low-
energy band predicted by the analogy to noninteracting
fermions at Q� is confirmed in similar exact spectra.)

In summary, we have demonstrated that the residual
interaction between composite fermions causes incompres-
sibility at � � 5

2 , and that the lowest order treatment of
�-level mixing gives a reasonable estimate of the activa-
tion energy. This model can be applied to neutral excita-
tions at � � 5

2 as well as charged excitations slightly away
from � � 5

2 . The residual interaction may possibly induce
pairing between composite fermions, but it is not known
how to establish that, in a conclusive manner, within our
approach.
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