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Quantitative predictions of defect properties in semiconductors using density functional theory have
been crippled by two issues: the supercell approximation, which has incorrect boundary conditions for an
isolated defect, and approximate functionals, that drastically underestimate the band gap. I describe
modifications to the supercell method that incorporate boundary conditions appropriate to point defects,
identify a common electron reservoir for net charge for all defects, deal with defect banding, and
incorporate bulk polarization. The computed level spectrum for an extended set of silicon defects spans
the experimental gap, i.e., exhibits no band gap problem, and agrees remarkably well with experiment.
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Formation energies of charged defects and electronic
transitions between different charge states of a defect
ultimately govern the electrical response of semiconduc-
tors. Density functional theory (DFT) [1,2] has proven to
be an effective tool for the study of semiconductors and is
the method of choice for first-principles simulations of
defects. However, accurate calculations of defect proper-
ties, especially defect levels, in even the most studied semi-
conductor, silicon, have been problematic. First, DFT de-
fect calculations almost invariably incorporate boundary
conditions inappropriate for a dilute defect, due to use of
the supercell approximation [3,4]. A second issue is the
“band gap problem” where DFT calculations, specifically
the Kohn-Sham eigenvalues, significantly underestimate
the fundamental band gap [5]. The silicon DFT band gap
is less than half the experimental gap and, since the band
gap defines the interesting energy scale for defect levels,
this appears to be a fundamental impediment to quantita-
tive predictions.

I present a method that addresses the deficiencies of the
standard supercell approximation and constitutes a more
rigorous, internally consistent computational model for an
isolated defect. Electrostatic boundary conditions are en-
forced that explicitly and properly account for net charge
and bulk polarization effects. Formation energies of all
charged defects are computed with a common electron
reservoir, eliminating the need for ad hoc procedures to
calibrate the electron chemical potential for each charged
defect calculation. Defect dispersion is handled with a new
occupation scheme for populating states. I apply this new
supercell model in DFT simulations to a variety of defects
in silicon to compute defect formation energies and defect
energy levels. The computed defect level spectrum is not
hampered by a band gap problem and shows that DFT is as
successful for predicting electronic defect levels in semi-
conductors as it is for structural energetics, once a robust
computational model of the defect and its charge is
constructed.

Periodic boundary conditions (PBCs) are the theoretical
framework around which solid state DFT codes are built.
Although this assumption provides a rigorous computa-
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tional model for perfect crystals, point defects lack three-
dimensional periodicity. To apply periodic DFT codes to
defects, the supercell approximation [3,4] is invoked,
wherein a point defect is modeled as a periodic array of de-
fects rather than as a single isolated defect. The Coulomb
potential for a periodic array of charged defects formally
diverges, however, and creates difficulties in creating a
quantitative model.

A central difficulty in computing formation energies of
charged defects is locating a valid chemical potential for
electron charge. A variety of empirical recipes have been
proposed to calibrate the electron chemical potential in
formation energy calculations of charged defects [6]. The
most popular aligns the valence band (VB) or conduction
band (CB) edge eigenvalue with the eigenvalue of a similar
state in a crystal calculation. Validity of these recipes
depends on the supercell band structure not being modified
by the defect, a poor assumption, and runs afoul of the band
gap problem, in that the VB and CB eigenvalues of the
crystal calculation are themselves dubious references.
Even taking advantage of this arbitrariness in defining
the chemical potential, these recipes yield no better than
a few tenths of an eV accuracy [7]. In the following, I
describe how to combine four modifications to the super-
cell approximation that provide a firmer physical founda-
tion for supercell defect calculations.

Boundary conditions.—The local moment counter-
charge (LMCC) method [8] removes the divergence and
installs the correct boundary conditions for net charge. The
LMCGC splits the supercell density p(r) into two parts, a net
charge py(r) and a remainder defect density p/,..(r) with
the net charge removed:

p(r) = plee(r) + pLm(r). (1)

The electrostatic potential ¢;(r) due to the net charge
pLu is solved with local boundary conditions, (¢/r — 0, as
r — o0), while the potential ¢/ () from the neutral defect
density pl.¢(r) is solved in PBC. The potential due to the
net charge is truncated at the cell boundary and does not
corrupt the potential of a neighboring cell. Divergence is
avoided, and boundary conditions are appropriate to a local
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defect. Applied in supercell calculations of charged atoms
and molecules [9], the LMCC gives total energies without
supercell dependence. The total potential is the sum of the
separate potentials:

B(r) = byee(r) + drm(r). 2

Standard computational approaches add a flat background
charge, jellium, to neutralize net charge in a supercell. A
jellium-based Poisson solver does not lead to the correct
local electrostatic potential [8] and hence yields an incor-
rect self-consistent density [10]. More critically, finding a
valid electron chemical potential is difficult.

Chemical potential. —Kleinman [11] demonstrated that
the Poisson Equation for the Coulomb potential in a three-
dimensional periodic calculation is solvable only to within
an integration constant. For uncharged supercell calcula-
tions, this is inconsequential; the total energy for a neutral
defect is insensitive to a constant potential Cgy. For a
charged defect, however, the formation energy depends
linearly in the charge on Cg4.. The DFT defect supercell
energy Eg4r(q) contains gCg4s. Conventional expressions
for a charged defect formation energy [12,13] are only
valid for charged defects if the integration constant Cg.¢
is the same for all defect calculations—which is not the
case. The value of Cy.; will be defect dependent, cell size
and shape dependent, and charge-state dependent; i.e., Cg.f
can be different for every defect calculation.

To make explicit the indefinite nature of the defect
potential, restate ¢/, in Eq. (2) as

¢é[ef(r) = d)def(r) + Cdef' (3)

The problematic term gCgye in Egf(g) stems from the
Coulomb integral of this potential with the net charge.
The following expression eliminates Cgy; from Eg¢(g):

Efi(@) = = [ drma)dua(n) + Ca)
+ [[drounpiu()
+ [ drnis, 0 + ¢,
- [arditp, o) )

The first term on the right subtracts the energy of the net
charge interacting with the potential generated by the
periodic defect density, eliminating the problematic inde-
terminate constant Cg. from the energy. This Coulomb
energy within the volume of the supercell is added back in
the second term, computing the energy with the local
potential due to the net charge and the defect density within
the central cell. Because pyy(r) has a well-defined poten-
tial, this interchange is possible. The third and fourth terms
in Eq. (4) retrace the steps of the first two terms, but using
the crystal density p,(r) and potential ¢ ,(r) + C,. With
this correction term, the defect supercell electrostatic en-

ergy is computed in a Coulomb field defined by embedding
the central cell charge in the bulk crystal. The defect-
dependent constant Cg is replaced by a constant defined
by the crystal calculation. Although unknown, C, will be
the same for every defect, in every supercell, in every
charge state, so that all charged defect formation energies
are grounded to the same electron reservoir.

Bulk polarization.—A net charge at a defect induces
screening in the bulk crystal that is not contained within
the volume of a supercell. A simple dielectric continuum
approximation due to Jost [14] suffices to estimate the
missing bulk polarization energy. Taking the unscreened
volume as a structureless dielectric about a spherical cavity
with a point charge at its center, the polarization energy
(Hartree atomic units) is

Epol(‘]) =(1- 1/60)(q2/2RJost): )

where € is the static dielectric constant (11.8 for Si), g is
the net charge, and Rj is the radius of the unscreened
volume. Lento, ef al. [10] observed that, using the LMCC,
the screened volume in a supercell calculation is less than
the full volume of the supercell. Noting this, I use an Ry
that is smaller (by 0.8 bohr) than the radius defined by the
supercell volume. The resulting shift from this offset is not
large, 0.1 eV difference for doubly charged species in a
250-site supercell.

Defect level dispersion.—In the modest supercell sizes
dictated by computational considerations, a defect inter-
acts with its periodic images to form a defect band rather
than a discrete state in the gap, as illustrated in the sche-
matic band structure in Fig. 1. For a converged treatment of
the bulk semiconductor, the Brillouin zone must be
sampled at multiple points [15]. However, defect states at
those sampling points can disperse above the CB minimum
or below the VB maximum [16]. Using conventional
schemes, if a defect state eigenvalue disperses above a
bulk band edge, the defect state is depopulated in favor
of a bulk band state and a metallic state results [Fig. 1(c)],
putting charge in the delocalized band state and reducing
the net localized charge on the defect. For a defect state
whose energy does not cross a bulk band edge, a defect
band with one electron will be populated with two elec-
trons in the defect state at one sampling point and with zero
at another [Fig. 1(b)].

To obtain a localized defect in the correct charge state,
I propose a discrete defect occupation scheme, illustrated
in Fig. 1(d)-1(f). States are populated at each sampling
point as if that k point were the only sampling point.
Metallic occupation, defined by moving electrons between
sampling points, is excluded. For silicon defects, this
scheme is essential to obtain meaningful results, in par-
ticular, for negatively charged defects with transitions near
the CB.

Taken together, these steps define a finite defect super-
cell model (FDSM) that provides an internally consistent
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FIG. 1 (color). Schematic representation of the standard
method and the discrete defect occupation method for populating
states of a supercell calculation. Vertical axis corresponds to
eigenvalues of the Hamiltonian as a function of the k vector
along the horizontal axis. The defect band is depicted as a red
dashed line. (a), (b), (c) In conventional methods, a Fermi level
(gray horizontal line) determines the occupations of the states,
states with eigenvalues below Er being occupied, those above
being empty. (d), (e), (f) With discrete defect occupation, states
are populated within each sampling point as if the defect were
isolated. Each charge state describes a valid model of an local-
ized defect state with zero, one, or two electrons.

description of an isolated defect. The FDSM formation
energy of a charge defect is written as

Eform(‘]) = Edef(Q) + Eg;f(Q) + Epol(‘]) - Ep(o)
- ZANI,U«I (6)
1

where Ef% [Eq. (4)] connects the formation energy to a
fixed electron reservoir, Ep [Eq. (5)] is the bulk polariza-
tion energy, E,, is the perfect crystal supercell energy, and
the last term is the energy cost (chemical potential w;)
associated with the difference in atom number AN; be-
tween the defect and crystal cell. Charge transition ener-
gies (ionization potentials) are computed, as usual, as
differences between formation energies. This determines
all the charge transition energies with respect to one an-
other, grounded to a common electron reservoir defined by
an unknown constant in the crystal calculation. A single
marker, such as a known defect level, then serves to align
the entire computed defect level spectrum within the ex-
perimental band gap.

Calculations were performed with SEQ QUEST [17] in the
local density approximation (LDA) [18]. Core electrons
are replaced by pseudopotentials [19,20] and valence elec-
tron wave functions are expanded in well-converged,
double-zeta plus polarization, contracted Gaussian basis

sets. Results presented used 250-site supercells with a 23 k
sample. In accord with guidelines set forth in Ref. [21],
simulations were tested for sufficiency with respect to
various calculational parameters, the details of which are
expanded upon in the supplemental information in
Ref. [22], and in subsequent publications.

The FDSM was applied to a wide variety of defects in
silicon: intrinsic defects (self-interstitial i, vacancy v, di-
vacancy vv), first row defects (boron interstitial B;, carbon
interstitial C;, nitrogen substitutional N, A center O,), and
a second row defect (sulfur substitutional S;). Figure 2
presents the computed charge transitions for this suite of
defects. The transition energies range from 4.38 eV for
i(2 — /—) to 5.45 eV for v(+/2+). This 1.07 eV span in
defect transition energies clearly exceeds the 0.5 eV band
gap in the DFT crystal eigenvalue spectrum. The range of
energies accessible to local charge transitions, the LDA
effective defect gap, is nearly the width of the experimental
band gap.

In Fig. 3, the computed LDA defect spectrum is com-
pared to known experimental levels [23-29]. The defect
charge transitions of Fig. 2 are aligned to set the CB edge at
4.35 eV and the VB edge at 5.52 eV. With this alignment,
the largest discrepancies between experiment and theory
are ~0.2 eV, and the mean average error in the defect
levels is 0.10 eV. The LDA has been very successful for
structural energetics in solid state systems and this broad
and excellent agreement with experiment demonstrates
that this success extends to charge state transitions com-
puted as differences of ground state total energy calcula-
tions. Calculations with the generalized gradient approxi-
mation (GGA) yield a similar defect spectrum as LDA.
Those results will be presented elsewhere.

The largest discrepancy with experiment is in the boron
interstitial, with the consequence that LDA fails to predict
the observed negative-U behavior [27]. I note here that
GGA corrects this, as GGA handles more accurately than
LDA the significant bonding rearrangements that occur as
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FIG. 2 (color). The computed DFT ionization potentials for
eight different silicon defects, with respect to the (unknown)
crystal electronic reservoir. The span of charge state transitions
is more than 1 eV, demonstrating that defect charge transitions
are not constrained by a band gap problem.
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FIG. 3 (color). Computed LDA defect levels (solid blocks) are
compared against experimental defect levels (open), aligned
within the band gap. Agreement between LDA and experiment
is good for all defects, in all parts of the band gap.

B, changes charge states. The LDA also fails to reproduce
the observed negative-U behavior in the positive charge
states of the vacancy [23], but the error in the individual
levels is not large, only ~0.1 eV. The negative vacancy
charge levels are predicted to lie at CB-0.27 eV and
CB-0.39 eV. The agreement between the LDA and experi-
ment is remarkably good for all known levels of defects as
varied as the A center, the carbon interstitial, and the
divacancy. The single self-interstitial has never been ob-
served experimentally. The LDA predicts five charge states
are stable, and all the levels are predicted to lie in the upper
half of the band gap.

Using a practical and robust computational model it is
shown that one can compute an accurate defect level
spectrum in silicon. With its small band gap and extensive
experimental data, silicon serves as a particularly stringent
test of the methodology developed here. The band gap
problem, a problem of DFT with the eigenvalues of delo-
calized bulk band states, is seen not to be a problem for
computing defect levels. Defect levels are computed as
differences of ground state total energies of local defect
states, and are fully screened with a static calculation,
without reference to Kohn-Sham eigenvalues. The key
aspect in computing total energies of localized charged
defects in the supercell approximation is to find a chemical
potential that ties charged defect formation energies to a
common electron reservoir, and to provide a compatible
treatment of bulk screening. The intrinsic band gap prob-
lem of computing the quasiparticle energies associated
with delocalized bulk band excitations remains open.
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