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We present simulation studies of the formation and dynamics of dark solitons and vortices in quantum
electron plasmas. The electron dynamics in the latter is governed by a pair of equations comprising the
nonlinear Schrödinger and Poisson system of equations, which conserves the number of electrons as well
as their momentum and energy. The present governing equations in one spatial dimension admit stationary
solutions in the form a dark envelope soliton. The dynamics of the latter reveals its robustness.
Furthermore, we numerically demonstrate the existence of cylindrically symmetric two-dimensional
quantum electron vortices, which survive during collisions. The nonlinear structures presented here may
serve the purpose of transporting information at quantum scales in ultracold micromechanical systems and
dense plasmas, such as those created during intense laser-matter interactions.
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Quantum plasmas are ubiquitous in micromechanical
systems and ultrasmall electronic devices [1], in laser
and microplasmas [2], and in dense astrophysical environ-
ments [3]. In such plasmas, quantum mechanical effects
(e.g., tunneling) are important since the de Broglie length
of the charge carriers (e.g., electrons and holes or posi-
trons) is comparable to the dimension of the system.
Recently, there has been a growing interest [4–9] in inves-
tigations of relevant quantum hydrodynamic (QHD) mod-
els for charged particle systems and collective interactions
in quantum plasmas. The QHD model has been introduced
to deal with negative differential resistance and resonant
tunneling phenomena in microelectronic devices [10].
Quantum transport models, similar to the QHD plasma
models, have also been used in superfluidity [11] and
superconductivity [12], as well as in the study of metal
clusters and nanoparticles, where they are referred to as
nonstationary Thomas-Fermi models [13].

In this Letter, we investigate, by means of computer
simulations, the formation and dynamics of dark or gray
envelope solitons and vortices in quantum electron plasmas
with fixed ion background. The results are relevant for the
transport of information at quantum scales in microplas-
mas as well as in micromechanical systems and micro-
electronics. For our purposes, we shall use an effective
Schrödinger-Poisson model [4–7], which was developed
by employing the Wigner-Poisson phase space formalism
on the Vlasov equation coupled with the Poisson equation
for the electric potential. Such a model was originally
derived by Hartree in the context of atomic physics for
studying the self-consistent effect of atomic electrons on
the Coulomb potential of the nucleus.

Generalizing the one-dimensional Schrödinger-Poisson
system of equations [5] to D dimensions, we have
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where the wave function � is normalized by
�����
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, the elec-
trostatic potential ’ by TF=e, the time t by @=TF, and the
space r by �D. We have introduced the notations �D �
��0TF=n0e2�1=2 and A � �Q=2, where the quantum cou-

pling parameter �Q�me
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and larger than unity for typical metallic electrons [5].
Here n0 is the equilibrium electron number density, TF �
@

2n2=3
0 =me is the Fermi temperature (neglecting irrelevant

dimensionless constant), me is the electron mass, e is the
magnitude of the electron charge, �0 is the electric permit-
tivity, and @ is the Planck constant divided by 2�. The
system of Eqs. (1) and (2) is supplemented by the Ampère
law @E=@t � iA��r�� ���r��, where the electric
field E � �r’. Equations (1) and (2) conserve the num-
ber of electrons N �

R
j�jd3x, the electron momentum

P � �i
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��r�d3x, the electron angular momentum
L � �i

R
��r� r�d3x, and the total energy E �R

	���Ar2�� jr’j2=2� j�j2�4=DD=�2�D�
d3x. We
note that a one-dimensional version of Eq. (1) without the
’ term has also been used to describe the behavior of a
Bose-Einstein condensate [14].

Let us first consider a quasistationary, one-dimensional
(D � 1) structure moving with a constant speed v0, and
make the ansatz � � W��� exp�iKx� i�t�, where W is a
complex-valued function of the argument � � x� v0t,
and K and � are a constant wave number and frequency
shift, respectively. By the choice K � v0=2A, we can then
write Eqs. (1) and (2) in the stationary frame as

 

d2W

d�2
� �W �

’W
A
�
jWj4W
A

� 0; (3)

and
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where � � �=A� v2
0=4A2 is an eigenvalue of the system.

From the boundary conditions jWj � 1 and’ � 0 at j�j �
1, we determine � � 1=A and � � 1� v2

0=4A. The sys-
tem of Eqs. (3) and (4) admits a first integral
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where we have used the boundary conditions jWj � 1 and
’ � 0 at j�j � 1.

We have solved Eqs. (3) and (4) numerically and have
presented the results in Fig. 1. Here we have plotted the
profiles ofW2 and’ for a few values of A, whereW was set
to �1 on the left boundary and to �1 on the right bound-
ary; i.e., the phase shift is 180� between the two bounda-
ries. We see that we have solutions in the form of a dark
soliton, with a localized depletion of the electron density
Ne � jWj

2, and where W has different sign on different
sides of the solitary structure. The local depletion of the
electron density is associated with a positive potential.
Larger values of the parameter A give rise to larger ampli-
tude and wider dark solitons. Unlike a dark soliton asso-
ciated with the usual cubic Schrödinger equation in which
the group dispersion and the nonlinearity coefficient have
opposite sign, the modulus of the wave function in the
present work has localized maxima on both sides of the
density depletion. If the boundary conditions are shifted
below 180� (i.e., by a complex number), we could have a
‘‘gray soliton,’’ which is characterized by a nonzero den-
sity at the center of the soliton. In order to assess the
dynamics and stability of the dark soliton, we have solved
the time-dependent system of Eqs. (1) and (2) numerically
with D � 1, and have displayed the result in Fig. 2. The

initial condition is � � 0:18� tanh	20 sin�x=10�
�
exp�iKx�, where K � v0=2A, A � 5, and v0 � 5. We
clearly see oscillations and wave turbulence in the time-
dependent solution presented in Fig. 2. Two very clear and
long-lived dark solitons are visible, associated with a posi-
tive potential of ’ � 3, which is consistent with the quasi-
stationary solution of Fig. 1 for A � 5. Hence, the dark
solitons seem to be robust structures that can withstand
perturbations and turbulence during a considerable time.

We next consider two-dimensional (D � 2) vortex
structures of the form � �  �r� exp�in�� i�t�, where r
and � are the polar coordinates defined via x � r cos���
and y � r sin���, � is a constant frequency shift, and n �
0;1;2; . . . , for different excited states (charge states).
With this, we can write Eqs. (1) and (2) in the form

 � � A
�
d2

dr2 �
1

r
d
dr
�
n2

r2

�
 � ’ � j j2 � 0; (6)

and

 

�
d2

dr2 �
1

r
d
dr

�
’ � j j2 � 1; (7)

respectively, where the boundary conditions  � 1 and
’ � d =dr � 0 at r � 1 determine � � 1. Different
signs of n represent different rotation directions of the
vortex. For n � 0, we must have  � 0 at r � 0, and
from symmetry considerations we have d’=dr � 0 at r �
0. In Fig. 3, we display numerical solutions of Eqs. (6) and
(7) for different charge states n and for A � 5. We see that
the vortex is characterized by a complete depletion of the
electron density at the core of the vortex and is associated
with a positive electrostatic potential. Vortices with higher
charge states are wider and are associated with a larger
potential. In order to assess the stability of the vortices, we
have numerically solved the time-dependent system of
Eqs. (1) and (2) in two-space dimensions (D � 2). We
found that a single vortex is stable for the cases n � 1, 2,
and 3 presented in Fig. 3. On the other hand, two vortices
that were placed near each other show an interesting dy-
namics. Two singly charged vortices with the same polarity
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FIG. 1. The electron density j�j2 (upper panel) and electro-
static potential ’ (lower panel) associated with a dark soliton
supported by the system of Eqs. (3) and (4), for A � 5 (solid
lines), A � 1 (dashed lines), and A � 0:2 (dash-dotted lines).

FIG. 2 (color online). The time development of the electron
density j�j2 (left panel) and electrostatic potential ’ (right
panel), obtained from a simulation of the system of Eqs. (1)
and (2). The initial condition is ��0:18� tanh	20sin�x=10�
�
exp�iKx�, with K � v0=2A, A � 5, and v0 � 5.
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rotate around each other, either clockwise (for n � 1) or
counterclockwise (for n � �1) with the rotation period
t � 2�, and remain stable. When the pair of vortices have
opposite polarities (one having n � 1 and the other n �
�1), the vortex pair also remains stable and propagates
with a constant velocity in the direction of the electron
flux between the two vortices. A slightly more complicated
situation is illustrated in Fig. 4, where we have placed
two singly charged vortex pairs at some distance from
each other (see the top row), by the initial condition

� � f1f2f3f4, where fj� tanh	
�����������������������������������������
�x�xj�2��y�yj�2

q

�

exp	injarg�x�xj;y�yj�
. Here �x1; y1� � ��4; 10�,
�x2; y2� � �2; 10�, �x3; y3� � ��2;�10�, and �x4; y4� �
�4;�10�, and the charge states n1 � �1, n2 � �1, n3 �
�1, and n4 � �1. The function arg�x; y� denotes the angle
between the x axis and the point �x; y�, and it takes values
between�� and �. The vortices in the pairs have opposite
polarity on the rotation, as seen in the electron fluid rota-
tion direction in the upper right panel. The time develop-
ment of the system exhibits that the ‘‘partners’’ in the
vortex pairs attract each other and propagate together
with a constant velocity in the direction of the electron
flux between the partners. When the two vortex pairs
collide and interact (see the second and third pairs of
panels in Fig. 4), the vortices keep their identities and
change partners in a manner of asymptotic freedom, result-
ing into two new vortex pairs which propagate obliquely to
the original propagation direction. Two doubly charged
vortices with the same polarity (both having n � 2 or n �
�2) break up into two pairs of singly charged vortices that
merged and reformed again in a quasiperiodic manner. If
the two vortices initially had opposite polarities (one hav-
ing n � �2 and the other having n � �2), we could

observe a rapid break up of the vortex pair and the for-
mation of quasi-one-dimensional (with larger length scale
in the x than in the y direction) and long-lived dark sol-
itons. Finally, in Fig. 5, we present 2D simulation results of
Eqs. (1) and (2) with the same initial condition as in Fig. 4,
except that we here used the double charge states n1 � �2,
n2 � �2, n3 � �2, and n4 � �2. The second row of pan-
els in Fig. 5 reveals that the vortex pairs initially move
towards each other, while a quasi-one-dimensional density
cavity is formed between the two vortex pairs. At a later
stage, the four vortices dissolve into complicated nonlinear
structures and wave turbulence. Hence, the nonlinear dy-
namics is very different between interacting singly and
multiply charged vortices, where singly charged vortices
are long-lived and keep their identities while doubly
charged vortices interact in a more complicated fashion
and do not keep their identities. This is, to some extent, in

FIG. 4 (color online). The electron density j�j2 (left panels)
and an arrow plot of the electron current i��r�� ���r��
(right panels) associated with singly charged (n � 1) two-
dimensional vortices, obtained from a simulation of the time-
dependent system of Eqs. (1) and (2), at times t � 0, t � 3:3,
t � 6:6, and t � 9:9 (from top to bottom). We used A � 5. The
singly charged vortices form pairs and keep their identities.
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FIG. 3. The electron density j�j2 (upper panel) and electro-
static potential ’ (lower panel) associated with a two-
dimensional vortex supported by the system (6) and (7), for
the charge states n � 1 (solid lines), n � 2 (dashed lines), and
n � 3 (dash-dotted lines). We used A � 5 in all cases.
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line with previous results on the nonlinear Schrödinger
equation, where it was noted that vortices with high charge
states are unstable [15]. In the numerical simulations of
Eqs. (1) and (2), we used a pseudospectral method to
approximate the x and y derivatives and a fourth-order
Runge-Kutta scheme for the time stepping. The numerical
simulations confirmed the conservation laws of the elec-
tron number, momentum, and energy up to the accuracy of
the numerical scheme. The numerical solutions of the
time-independent systems (3) and (4) as well as (6) and
(7) were obtained by using the Newton method, where the
� derivatives were approximated with a second-order cen-
tered difference scheme with appropriate boundary condi-
tions on � and ’.

In summary, we have demonstrated the existence of
localized nonlinear structures in quantum electron plas-
mas. The electron dynamics in the latter is governed by a
coupled nonlinear Schrödinger and Poisson system of
equations, which admit a set of conserved quantities. The
latter were checked numerically. Quasistationary, localized
structures in the form of one-dimensional dark solitons and
two-dimensional vortices were found by solving the time-
independent systems of Eqs. (3) and (4) as well as (6) and
(7) numerically. These structures are associated with a
local depletion of the electron density associated with
positive electrostatic potential and are parametrized by
the quantum coupling parameter only. In the two-
dimensional geometry, we have a class of vortices of
different excited states (charge states) associated with a
complete depletion of the electron density and an associ-
ated positive potential. Numerical simulations of the time-
dependent system of Eqs. (1) and (2) show the formation of
stable dark solitons in one-space dimension with an am-
plitude consistent with the one found from the time-
independent solutions. In two-space dimensions, the quan-
tum vortices of the first excited state were found to be
stable and the preferred nonlinear state was in the form of
electron vortex pairs of having different polarities. Pairs of
quantum electron vortices of multiply excited states were
found to be unstable. One-dimensional dark solitons and
singly charged two-dimensional quantum electron vortices
are thus long-lived coherent nonlinear structures, which
can transport information at quantum scales in microme-
chanical systems and dense laboratory plasmas.
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FIG. 5 (color online). The electron density j�j2 (left panels)
and an arrow plot of the electron current i��r�� ���r��
(right panels) associated with double charged (n � 2) two-
dimensional vortices, obtained from a simulation of the time-
dependent system of Eqs. (1) and (2), at times t � 0, t � 3:3,
t � 6:6, and t � 9:9 (from top to bottom). We used A � 5. The
doubly charged vortices dissolve into nonlinear structures and
wave turbulence.

PRL 96, 245001 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
23 JUNE 2006

245001-4


