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Synchronization of Chaotic Systems with Coexisting Attractors
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Synchronization of coupled oscillators exhibiting the coexistence of chaotic attractors is investigated,
both numerically and experimentally. The route from the asynchronous motion to a completely synchro-
nized state is characterized by the sequence of type-I and on-off intermittencies, intermittent phase
synchronization, anticipated synchronization, and period-doubling phase synchronization.
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The notion of synchronization provides a general ap-
proach to the understanding of the collective behavior of
coupled dynamical systems and underlies a variety of mod-
ern techniques for chaos control and secure communica-
tions [1]. It is common to distinguish several types of syn-
chronization, such as complete synchronization [2], gen-
eralized synchronization [3], phase synchronization [4],
lag synchronization [5], and anticipated synchronization
[6]. All these types of synchronization have been exten-
sively studied in monostable chaotic systems (see, e.g.,
Ref. [7] and references therein). However, many dynamical
systems exhibit multistability or coexistence of several
attractors for a given set of parameters. Multistability
was indeed observed in different fields of science, includ-
ing electronics [8], lasers [9], mechanics [10], biology [11],
nuclear physics [12], chemistry [13], and economy [14].
Multistable systems are extremely sensitive to pertur-
bations due to their complexly interwoven basins of
attraction.

Synchronization of multistable systems still remains a
long-standing and challenging problem of a broad inter-
disciplinary interest, both from the point of view of funda-
mental research and for practical applications. The pre-
diction of bifurcations and synchronization are still largely
debatable questions, even in such relatively simple systems
as Rössler oscillators described by Caroll and Pecora [15].
The analysis is further complicated by the presence of
chaos and fractal boundaries of basins of attraction of the
coexisting attractors. For example, recently Guan et al.
[16] studied synchronization of Lorenz and Rössler sys-
tems coupled in a drive-response configuration. They have
found that the chaotic driving splits the synchronous at-
tractor and thus generates bistability in the response sys-
tem; both chaotic attractors were synchronized with the
drive system. However, it is still unknown what happens
with a state of a multistable system in the most general and
therefore the most interesting case: when one multistable
system is coupled with another identical multistable sys-
tem. The answer to this question manifests inherent diffi-
culties, when considering, e.g., two coupled chaotic bi-
stable systems in a master-slave configuration. What hap-
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pens with the slave system when the coupling strength is
increased? Intuitively, one might think that the slave sys-
tem will first accommodate its state to the one of the master
system and then the problem would reduce to the well-
known case of two identical chaotic monostable systems.
However, this naı̈ve view is only partly true. In this Letter
we demonstrate that the dynamics of coupled multistable
systems is much richer and more complicated, including
different types of synchronization, intermittency, shift of
the natural oscillator frequency, and frequency locking.

In order to illustrate our results, and without lack of
generality, we consider two identical unidirectionally
coupled piecewise linear Rössler-like electronic circuits
[15,17,18]:
 

dx1

d�
� ��x1 � z1 � �y1;

dx2

d�
� ��x2 � z2 � ��y2 � "�y1 � y2��;

(1)

 

dy1

d�
� x1��y1;

dy2

d�
� x2���y2�"�y1� y2��; (2)

 

dz1

d�
� g�x1� � z1;

dz2

d�
� g�x2� � z2; (3)

where

 g�x1;2 � �

(
0; if x1;2 � 3

��x1;2 � 3�; if x1;2 > 3

)

is the piecewise linear function, � � t	 104 s (t being the
real time), � � 0:05, � � 0:5, � � 0:3, � � 15, and " 2
�0; 1� is the coupling strength. All parameters are selected
to reflect the real experiment that will be considered later.
Equations (1)–(3) serve as a good model for many real
systems including electronic circuits [2], chemical reac-
tions [19], and biological systems [20]. Starting from
different initial conditions the master and slave circuits
stay without coupling (" � 0) in different chaotic attrac-
tors with natural frequencies fm and fs. The coupling has
no effect on the dynamics of the slave oscillator up to " �
0:005 (0.5%) and the phase difference between the slave
2-1 © 2006 The American Physical Society
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and master oscillations increases linearly with time. At a
certain critical value of the coupling strength ("c � "1 �
0:005 05), the slave system starts to switch intermittently
between two coexisting chaotic attractors [Fig. 1(a)]. This
is the weakest stage of synchronization. The phase of the
master and slave oscillators can be defined as ��t� �

2�k� 2� t�tk
tk�1�tk

(tk being the time of kth maximum of
the corresponding signal) [7]. Since within the windows
where the slave and master oscillators stay in the same
attractor the average time difference between successive
peaks of the master and slave oscillations is equal to the
natural period of the chaotic oscillations, we may approxi-
mate tmk�1 � t

m
k 
 tsk�1 � t

s
k 
 1=fm. Therefore, the phase

difference between the peaks of the slave and master
oscillations with the same number k can be written as
�� � 2��tsk � t

m
k �fm (tsk and tmk being the times of kth

maximum of the slave and master oscillations). As it can be
seen in Figs. 1(b) and 1(c), �� within the windows drifts
as a random walk in the range �� � ��max � ��min 

2� (��max and ��min being the maximum and minimum
phase difference in the windows) featuring a normal proba-
bility distribution [Fig. 1(d)] and the most probable phase
difference ��mod2� 
 ��, i.e., the most probable syn-
chronization state is the antiphase regime. While " is
increasing, the jumps to the synchronization regime occur
more frequently and �� decreases (Fig. 2). This means
that the phases inside the windows become synchronized
within a certain range of ��. We will refer to this regime
as intermittent phase synchronization (IPS). IPS here im-
plies intermittent switches between a phase synchroniza-
tion state and an asynchronous state, at variance with other
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FIG. 1. Dynamics of the slave system at " � 0:0051. (a) Time
series demonstrating intermittent switches between coexisting
attractors. (b) Temporal behavior of phase difference. �� in-
creases linearly when the systems stay in different attractors and
fluctuates around a certain value when the systems stay in the
same attractor. (c) Random walk of phase difference inside
window 1:33 s< t < 1:95 s where the systems stay in the
same attractor. (d) Probability distribution of the phase differ-
ence inside the windows. The line is the Gaussian fit. The
negative phase difference means anticipated synchronization.
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phase intermittent phenomena observed in coupled map
lattices [21]. The average anticipation time decreases with
increasing " (��mod2�! 0) while �� ! 0. The mean
duration of the IPS windows (laminar phase), htLi, also
decreases and finally at " 
 0:1 the windows of IPS dis-
appear. A nontrivial result is that the oscillations of the
slave system anticipate the oscillations of the master sys-
tem and the maximum anticipation time is of the average
period of the chaotic oscillations, 1=fm (Fig. 2). This
means that the slave system is synchronized not with the
present state of the master system but with its future state.
Usually anticipated synchronization is observed in chaotic
systems with time-delayed feedback [6,22]. However, as
was mentioned by Voss [6] this phenomenon can also occur
in continuous chaotic unidirectionally coupled systems
without any delay. The origin of such a behavior is still
an open problem which requires additional investigation.
Here the anticipation process is confirmed by the fact that a
maximum is emerging in the cross-correlation plot, and
can be understood as the fact that a small coupling acts as a
small change in initial conditions of the slave system,
directing its phase trajectory to a future state of the master.

In order to understand the transition route from asyn-
chronous motion to perfect phase synchronization inside
the IPS windows, we derive the type of intermittency by
searching a scaling relation between htLi and ". With
increasing ", htLi first decreases, then it increases, and
finally it decreases again. It seems that the system has
two saddle-node bifurcation points corresponding to larg-
est htLi at "1 � 0:005 05 and "2 � 0:028. Near these criti-
cal points the power law

 htLi � �"� "c�p (4)

is characterized by two different scaling exponents p �
�1=2 [Fig. 3(a)] and p � �1 [3(b)]. The first scaling
exponent is a characteristic of type-I intermittency associ-
ated with a saddle-node bifurcation [23]. The same scaling
law was observed previously in a bistable chaotic system
with external modulation [24,25]. The second critical ex-
ponent of �1 is a signature of on-off intermittency also
associated with a saddle-node bifurcation. On-off intermit-
tency was observed previously in many coupled chaotic
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FIG. 2. Average phase difference (filled dots) and fluctuation
range (open dots) versus coupling strength inside windows of
IPS. While " is increased, both the anticipation time and ��
decrease leading to almost perfect IPS.
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FIG. 4. Dependence of natural frequency of slave system on
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FIG. 3. Power law dependences of mean duration of IPS
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of (a) �1=2 and (b) �1 that characterize type-I and on-off
intermittencies.
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systems, including maps [26], Rössler oscillators [27],
Duffing oscillators [28], and lasers [29]. The probability
distributions of laminar phase versus the laminar length in
the regions of type-I and on-off intermittencies are found to
obey scaling laws with exponents �1=2 and �3=2, that
also confirm these types of intermittency [26,30]. In the
middle range of coupling, 0:01< "< 0:028, the scaling
exponent is positive; i.e., htLi increases with increasing ".
We do not refer this regime to a particular type of inter-
mittency, rather to a mixture of type-I and on-off
intermittencies.

Thus, the evolution of the bistable chaotic system from
asynchronous behavior to perfect phase synchronization is
realized through type-I and on-off intermittencies. One
should expect type-I intermittency only for very weak
coupling near the onset of intermittency "1. The slave
system is sensitive to only some high peaks of the master
oscillations and does not feel other peaks. Therefore, the
phase is not yet synchronized, i.e., analogously to the
Brownian motion there exists the phase diffusion of ��
inside the windows in a 2� phase interval (�� 
 2�) (see
Fig. 2). In fact, in this range chaos of the master system acts
as noise inducing type-I intermittency in the slave system
[31]. Since only these high peaks force the slave system to
change the attractor, the windows appear very rarely and
their duration is large. With increasing ", the slave system
becomes sensitive to more and more peaks of the master
oscillations and hence the windows appear more frequently
and their duration decreases. Finally, when " is increased
so that the slave system is sensitive to all peaks of the
master oscillations, the oscillations of the master system
lock the oscillations of the slave system within a certain
range of phase ��< 2�. This occurs at the critical point
"2, the onset of on-off intermittency. From "2 the slave
system becomes sensitive to the shape of the master oscil-
lations that leads to phase synchronization. The transition
from a phase-unlocked on-off intermittency to a phase-
locked one was observed also in coupled chaotic identical
monostable systems [32]. Thus, on-off intermittency (or
modulational intermittency) results from chaotic driving of
the slave system by the master oscillations.

Besides IPS and anticipated synchronization another
interesting phenomenon is observed in the coupled bistable
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chaotic systems. At relatively strong coupling (" > 0:25)
the fundamental frequency of the chaotic attractor of the
slave system, fs, begins to decrease moving towards the
period-doubling frequency of the master system, fm=2
(Fig. 4). As a result, slips of phase-synchronized period-
doubling oscillations arise. We will refer to this type of
synchronization as period-doubling phase synchronization
(PDPS). With a further increase in ", fs approaches fm=2
and the windows of PDPS becomes larger. Finally, fs
becomes completely locked by fm=2 (at " > 0:5) and a
stable PDPS regime is observed. Thus, the resonance in-
teraction of the natural frequencies of the master and slave
oscillators results in the frequency locking phenomenon in
the form of phase-synchronized period-doubling oscilla-
tions (2:1 frequency locking). For " > 0:68, the 2:1 locking
regime is interrupted by 1:1 frequency locking windows
which appear more and more frequently with increasing ".
At stronger coupling strengths, the amplitude of the period-
doubling oscillations decreases and the systems become
completely synchronized at " > 0:7.

The effects found in the numerical simulations are fully
verified in experiments. We build two electronic circuits
with parameters used in Eqs. (1)–(3) [2,18]. The experi-
mental values of " at which PDPS and complete synchro-
nization are observed are larger than those in simulations,
because of experimental noise and a tolerance in values of
electronic components. The latter fact makes the systems
not completely identical to each other, which implies a
stronger coupling to synchronize them. Although we do
not get an exact quantitative coincidence, the qualitative
agreement is evident. The route from asynchronous behav-
ior to complete synchronization through anticipated syn-
chronization in the windows of IPS [Fig. 5(a)], and PDPS
[Fig. 5(b)] is clearly observed in the experiments, and
confirmed by cross-correlation measurements. Previously
anticipated synchronization was detected experimentally
only in chaotic systems with time-delayed feedback [22].
The same scenario to complete synchronization is ob-
served for different initial conditions of the master and
slave systems. We also study synchronization in systems
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FIG. 5. Experimental time series demonstrated (a) anticipated
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with coexisting periodic and chaotic attractors and with
two periodic attractors. In these cases synchronization
dynamics is not as rich as in the case of coexisting chaotic
attractors. Nevertheless, some features inherent to multi-
stable systems remain, for example, IPS and PDPS are also
observed in the system with coexisting periodic and cha-
otic attractors.

In conclusion, we have studied, numerically and experi-
mentally, synchronization of a bistable chaotic dynamical
system coupled unidirectionally with another identical
chaotic system. While the coupling strength is increasing,
synchronization manifests itself, first, by intermittent
jumps between two coexisting attractors demonstrating
type-I and on-off intermittencies. Inside the windows
where the systems stay in the same attractor, anticipated
synchronization is observed. At the relatively strong cou-
pling strengths, the interaction between fundamental fre-
quencies of the coexisting attractors shifts the natural
frequency of the slave oscillator towards a half of the
natural frequency of the master oscillator, inducing
phase-synchronized period-doubling oscillations. We
argue that the phenomena described in this Letter are
general for a wide class of multistable dynamical systems.
Anticipated synchronization can be of interest for applica-
tion in communication, because the slave system antici-
pates the state of the master system and hence one can get
information about its future state.
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Ser. 23, 122 (2005).
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