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We develop an amended ray-optics description for reflection at the curved dielectric interfaces of
optical microresonators which improves the agreement with wave optics by about one order of magnitude.
The corrections are separated into two contributions of similar magnitude, corresponding to ray
displacement in independent quantum-phase-space directions, which can be identified with Fresnel
filtering and the Goos-Hänchen shift, respectively. Hence we unify two effects which only have been
studied separately in the past.
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Over the recent years it has become feasible to design
optical microresonators that confine photons by means of
dielectric interfaces into a small spatial region not larger
than a few micrometers [1–3]. Two promising lines of
research are the amplification of photons by stimulated
emission in active media, which yields lasing action [1–
11], and the generation and trapping of single photons
which can be used as carriers of quantum information
[12]. These applications require integration of several
components and interfacing with electronics, which are
best realized in two-dimensional resonator geometries
where the main in- and out-coupling directions are con-
fined to a plane, and can be selected via the (asymmetric)
resonator geometry. Furthermore, because of the require-
ments of mode selection, these applications favor micro-
resonators of mesoscopic dimensions, with size parameters
kL � O�100� �O�1000� (where L is the linear size, k �
2�=� is the wave number, and � is the wavelength) which
quickly puts these systems out of the reach of numerical
simulations. On the other hand, ray-optics predictions of
the intricate resonator modes [4,6,9,13–17] can deviate
substantially from experimental observations [5,7] and
theoretical predictions [5,11,15,16].

The purpose of this Letter is to develop an amended ray-
optics (ARO) description which still idealizes beams as
rays, but incorporates corrections of the origin and propa-
gation direction of the reflected ray. We identify these cor-
rections by utilizing quantum-phase-space representations
of the incident and reflected beam [18] and relate them to
the recently discovered Fresnel-filtering effect [19] and the
long-known Goos-Hänchen shift [20]. These two effects
have only been discussed separately in the past [for appli-
cations to microresonators see, e.g., Refs. [5,11,21,22] ],
and their complementary nature has not been realized.
Moreover, their uniform analysis for all angles of incidence
is known to pose considerable technical challenges [19,23–
25]. In the phase-space representation, the Fresnel-filtering
and Goos-Hänchen corrections are simply determined by
the position of maximal phase-space density. For the pro-

totypical case of a Gaussian beam reflected from a con-
stantly curved dielectric interface, we find that compared to
conventional ray optics, the resulting ARO improves the
agreement of the far-field radiation characteristics with
wave optics by about one order of magnitude.

Conventional ray optics assumes that beams have well-
defined propagation directions and a precise point of im-
pact on a sharp dielectric interface, and predicts that an
incident beam is reflected specularly and locally at the
interface [26]. In two dimensions, deviations from ray
optics at curved interfaces are apparent already at inspec-
tion of wave patterns such as shown in the left panel of
Fig. 1, where the incident beam propagates from right to
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FIG. 1 (color online). Left panel: Gaussian beam reflected
from a curved dielectric interface (kR � 100) separating regions
of refractive index n0 � 1 and n � 0:667. Light regions indicate
high wave intensity. The angle of incidence �0 � 42� is close to
the critical angle �0 � 41:8�. Conventional ray optics predicts
that the beam is specularly reflected at the point of incidence. In
this Letter we use phase-space representations to obtain a more
accurate reflection law, which accounts for (i) the Goos-Hänchen
shift (GHS) �� of the reflection point along the interface and
(ii) the increase �� of the reflection angle due to Fresnel
filtering. Both effects change the far-field radiation direction �
(see the right panel, which exaggerates the corrections in order to
clarify the notation). For the parameters in the left panel, �� �
7� and �� � 1� (see Fig. 3), resulting in a corrected ray which
nicely reproduces the observed radiation direction.

PRL 96, 243903 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
23 JUNE 2006

0031-9007=06=96(24)=243903(4) 243903-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.243903


left. The wave pattern reveals that the reflected beam
originates from a displaced position and propagates into
a different direction than predicted by ray optics.

We choose a coordinate system with origin at the center
of the circle of curvature (see the right panel of Fig. 1). This
circle has the same radius of curvature R as the dielectric
interface and touches it tangentially at the point of inci-
dence. The incident beam propagates into negative x di-
rection. For the comparison of wave optics to ray optics it
is convenient to parametrize the rays by Birkhoff coordi-
nates (�, sin�), where � parametrizes the polar angle of
the ray’s intersection point with the interface, while R sin�
is the impact parameter of the ray, where � is its angle of
incidence. In this two-dimensional phase space, ray optics
locates the incident and reflected rays in Fig. 1 both at the
same point � � �0, sin� � sin�0, where furthermore
�0 � �0 for the present case that the incident ray is
oriented into negative x direction.

In wave optics, the corresponding two-dimensional
Gaussian beam is described by the wave function

 �in�r; �� �
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where H	m are Hankel functions and w is the width of the
beam in the polar angle �. Since we are interested in the
corrections in leading order of kR, we assume that the
curvature is locally constant. Then the reflected beam has
the wave function
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where Jm denotes the Bessel function and n is the refractive
index on the other side of the interface.

In order to analyze the exact wave pattern in the phase
space of Birkhoff coordinates we utilize Husimi represen-
tations in the near field of the dielectric interface. These
Husimi functions are obtained by overlapping the incom-
ing and reflected beam at the interface with a minimum
uncertainty wave packet centered around (�, sin�) [18],

 H 	��; sin�� � cos��
��������
X

m

c	mH
	
m �kR�e

i�m�kR sin�����w2=2��m�kR sin��2
��������

2
: (5)

The Husimi phase-space representations of the wave
pattern of Fig. 1 are shown in Fig. 2. The width w �������������
�=kR

p
of the incident Gaussian beam is chosen such

that it yields an optimal approximation of a classical ray
with comparable uncertainties in the propagation direction
and the point of impact. This results in the almost-circular
phase-space density in the left panel. The location of the
maximal phase-space density corresponds well with the
ray-optics prediction (�0, sin�0), indicated by the cross
.
The phase-space representation of the reflected beam is
shown in the right panel. Clearly the position (�max,
sin�max) of the maximal phase-space weight of the re-
flected beam is displaced from the ray-optics prediction,
as had to be expected from the inspection of the wave
pattern in Fig. 1.

The displacement in sin� direction can be explained
by Fresnel filtering, which was introduced by Tureci
and Stone [5,19]: a realistic beam has an uncertainty
*1=�kRw� of its propagation direction which results in a
spreading of the angle of incidence. The angle of incidence
is further spread because of the curvature of the interface
over the focal width Rw. The Fresnel reflection coefficient
displays an angular dependence which favors the reflection
of wave components with a larger angle of incidence. This
increases the beam’s angle of reflection, by an amount
which we identify with the displacement

 �� � �max � �0: (6)

The displacement into � direction can be interpreted as
a Goos-Hänchen shift (GHS), first discovered for planar

interfaces in 1947 [20] [for recent works see Refs. [11,27–
30] ]. This shift arises from the penetration of the evanes-
cent wave into the optically thinner medium [23,24]. We
identify the resulting lateral displacement of the reflection
point along the physical interface with

 �� � �max ��0: (7)

The angle-of-incidence dependence of �� and �� is
shown in Fig. 3. Both corrections are most pronounced
around the critical angle of incidence �0 �41:8�, and are
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FIG. 2 (color online). Near-field Husimi phase-space represen-
tations (5) of the wave pattern of Fig. 1. The left panel shows the
Husimi function H� of the incident beam, while the right panel
shows the Husimi function H
 of the reflected beam. The
crosses
 indicate the ray-optics prediction for the point of high-
est phase-space density, which is accurate for the incident beam,
but not for the reflected beam. The displacement into � direction
can be related to the Goos-Hänchen shift, while the displacement
into sin� direction is the consequence of Fresnel filtering.
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sizeable effects even for rather large values of kR. Beyond
the critical angle, �� approaches the classical result for
the GHS by Artmann [23,31], which is derived in the
regime of total reflection �> �0 at a planar interface.

ARO consists in propagation of the reflected beam with
point of reflection given by �ARO � �0 
�� and angle
of reflection given by �ARO � �0 
 ��, resulting in a
propagation direction

 �ARO � �0 
 �0 
��
�� (8)

(see the right panel of Fig. 1). Note that the corrections ��

and �� both have been determined in the near field of the
interface [see Eqs. (6) and (7)]. Hence, within the ideal-
ization of beams by rays, ARO agrees exactly with wave
optics in the near field of the interface. The question is then
whether the ARO ray parameters deliver accurate predic-
tions also in the far field (where the beam may encounter
another optical component or a detector). Hence, we now
test the accuracy of ARO by examination of its predictions
for the far-field radiation characteristics.

Figure 4 assesses these predictions for the wave pattern
of Fig. 1 by means of Husimi phase-space representations
of the incident and reflected beam in the far field of the
interface,

 

~H 	��; sin�� �
��������
X

m

c	mei�m�kR sin����i�m=2��w2=2��m�kR sin��2
��������

2
: (9)

In the far field, the phase-space coordinate � coincides
with the propagation direction �, while sin� is still related
to the impact parameter R sin� (this coordinate is pre-
served because of angular-momentum conservation with
respect to the center of the circle of curvature). The inci-
dent beam propagating into negative-x direction is thus
represented by phase-space coordinates ��; sin�� �
�0; sin�0�. Ray optics predicts that the reflected beam has
phase-space coordinates ��; sin�� � ��RO; sin�0�, where
�RO � �0 
 �0, while ARO predicts that the reflected
beam is located at ��; sin�� � ��ARO; sin�ARO�. The posi-

tion ( ~�max, sin~�max) of the maximal phase-space density of
the reflected beam in the far field (right panel of Fig. 4)
indeed corresponds well to the ARO prediction (indicated
by �), but deviates distinctively from the ray-optics pre-
diction (indicated by 
).

In Fig. 5 the far-field radiation direction � is analyzed as
a function of the angle of incidence. One of the curves is
the deviation ��RO � ~�max � �RO of the observed radia-
tion direction from the prediction of conventional ray
optics. For kR � 100, the maximal deviation is � 12:5�

and occurs about 4� below the critical angle of incidence.
The plot also shows the deviation of ARO, ��ARO �
��RO � ��� ��. It is seen that ARO improves the
agreement to 2� close to the critical angle and agrees
even better away from it. For larger size parameters kR �
400, the maximal disagreement between ray optics and
wave optics drops to � 3:5� and occurs at about 1� below
the critical angle of incidence. The ARO prediction agrees
within 0.3� around the critical angle, and the agreement is
almost perfect away from it.

To summarize, we developed a systematically amended
ray-optics description of the reflection of Gaussian beams
from the curved dielectric interfaces of optical microreso-
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FIG. 4 (color online). Same as Fig. 2, but for the far field,
where the Husimi representations ~H

	 are given by Eq. (9). The
diagonal cross � indicates the ARO prediction for the reflected
beam, which incorporates the Goos-Hänchen shift and Fresnel
filtering.
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FIG. 3 (color online). Angle-of-incidence dependence of the
Goos-Hänchen shift �� and the Fresnel-filtering correction ��
in the near field of a curved interface with kR � 100 (top panel)
and kR � 400 (bottom panel). The remaining parameters are as
in Fig. 1. The black line shows the classical result for the Goos-
Hänchen shift by Artmann [31].

PRL 96, 243903 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
23 JUNE 2006

243903-3



nators. This description incorporates the Goos-Hänchen
shift of the reflection point along the interface and the
Fresnel-filtering enhancement of the angle of reflection.
The corrections were determined by analysis of exact
wave-optical beams in a phase space where one coordinate
is associated with the point of incidence or reflection along
the interface, while the other one is related to the angle of
incidence or reflection, respectively. Fresnel filtering and
the Goos-Hänchen effect displace the reflected beam along
independent phase-space directions. Hence, these displace-
ments in principle exhaust all possibilities of amending ray
optics while still keeping the basic assumption of propaga-
tion along straight lines in optically homogeneous media.

Amended ray optics is applicable to microresonators
with smooth boundaries where the dimensionless radius
of curvature kR is large, which is realized in most experi-
ments. This includes the popular examples of multipole de-
formations [4–6,13–15,17] or stadium geometries [7–9].
Complementary techniques exist to describe the diffraction
of beams at sharp corners where formally kR � 0 [32]; see
Ref. [16] for an application to hexagonally shaped reso-
nators [2]. It remains to be seen whether both techniques
can be interlaced to describe geometries which combine
both curved interfaces and sharp corners [10,11], more-
over, whether both techniques can be unified in the chal-
lenging regime of a local curvature with kR � O�1�.
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FIG. 5 (color online). Angle-of-incidence dependence of the
deviation of the far-field radiation direction � from the predic-
tions of ray optics (RO) and amended ray optics (ARO). Top
panel: kR � 100. Bottom panel: kR � 400. The remaining pa-
rameters are as specified in Fig. 1.
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