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An analytical scheme is presented for designing a laser pulse to excite H2 from one specified
vibrational-rotational state to another. The scheme is based on an adiabatic two-state approximation in
a Floquet picture. By continuously and smoothly changing the laser frequency, we explicitly harness the
dynamic Stark shifts and maintain resonance between the dressed diabatic states during laser-molecule
interaction. The explicit time-dependent solution of the Schrödinger equation confirms the validity and
efficacy of the analytically designed laser pulses. The scheme depends on the molecular polarizability to
achieve its control objectives.

DOI: 10.1103/PhysRevLett.96.243003 PACS numbers: 33.90.+h, 02.30.Yy, 31.70.Hq, 82.53.Kp

Active control of molecular dynamics using specially
designed laser pulses has attracted considerable attention
over the past two decades, from both the theoretical [1–4]
and experimental [5–10] perspectives. However, much of
the past work has treated the interaction between mole-
cules and lasers within the electric dipole approximation
(see also Refs. [11,12], and references therein). For high
field strengths, which exist in many experiments, polariza-
tion effects can be significant. In this regard, Sato et al. [13]
have discussed the selective dissociation of CO2�

2 ions by
controlling the relative phase of the ! and 2! components
of a bichromatic laser; Salomon et al. [14] have reported
the optimal control of molecular orientation and alignment
in a linear rigid-rotor model including polarization effects;
Shapiro et al. [15] have discussed vibrational and rota-
tional excitation of homonuclear diatomics in the context
of quantum computing; and, recently, a two-stage toolkit
strategy for incorporating the polarization effects into op-
timal control calculations has been suggested by Balint-
Kurti et al. [16,17] and applied to the vibrational and
rotational excitation of H2 molecules in a realistic manner.
In spite of these successful strong field calculations and
experiments, little analytical work has been done to reveal
the control mechanism behind the complicated optimal
pulses. In this Letter, we present an analytical pulse design
scheme, including polarization effects, which is based on a
two-state treatment of the dynamics in a Floquet picture.
Our results show that the desired objective can be achieved
through control of the time-varying instantaneous fre-
quency of the laser pulse. The analytically derived laser
pulses are verified by the accurate numerical solution of the
time-dependent Schrödinger equation (TDSE). The ana-
lytic model should give reliable predictions whenever the
density of quantum states is less than the width of the
frequency components of the laser field. The analytically
derived pulses provide a transparent explanation of the
control mechanism.

Our model consists of a ground state jgi and an excited
state jei. The states are coupled by a laser field

 ��t� � �̂A0f�t� cos��t�; (1)

where �̂ is the polarization vector, A0 is the field strength,
f�t� is the normalized pulse envelope, and ��t� is the
temporal phase of the field. The Hamiltonian of this two-
level model may be written as

 H �
Eg � �gg�

2�t�=2 ��eg�
2�t�=2

��ge�2�t�=2 Ee � �ee�2�t�=2

 !
; (2)

where Ei is the field-free energy of state jii and �ij �
hij�̂ � � � �̂jji is a matrix element of the polarizability
tensor �. If the pulse envelope f�t� and laser frequency
!�t� � d�=dt are both slowly varied in comparison to the
fast optical oscillations, we can invoke the two-photon
rotating wave approximation and transform Eq. (2) into a
Floquet representation [18]. The corresponding Floquet
Hamiltonian may be written as:

 

~H �
~Eg � 2@!�t� �@�ge�t�=2
�@�eg�t�=2 ~Ee

 !
; (3)

where ~Ei � Ei � �iiA2
0f

2�t�=4 is the polarization-shifted
energy of state jii and �eg�t� � �egA2

0f
2�t�=4@ repre-

sents the effective laser-molecular coupling (Rabi fre-
quency) between the ground and excited states. The dia-
batic energies, i.e., the diagonal elements of ~H, cross
at the polarization-shifted two-photon resonance !2r �

� ~Ee � ~Eg�=2@, and the adiabatic energies, i.e., the eigen-
values of the full ~H, cannot cross. An avoided crossing
arises at ! � !2r with the energy gap proportional to
�eg�t�, which induces a (localized) nonadiabatic transition
between the two adiabatic states. Molecular motion in an
intense laser field can thus be controlled directly by man-
aging these nonadiabatic transitions with changes in laser
parameters such as amplitude, frequency, and chirping.
Following this idea, various classes of control pulses can
be designed by analogy with single-photon transitions
[18,19]. In order to concentrate on the essential physics,
we consider only the most fundamental case, i.e., complete
vibrational and rotational excitations of homonuclear dia-
tomic molecules by a phase-shaped two-photon � pulse.
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The details of other controls and extension to general
molecules are discussed elsewhere [20].

If the instantaneous frequency of the field !�t� is modu-
lated so as to continually maintain degeneracy between the
two diabatic Floquet levels, i.e.,

 !�t� �
Ee � Eg

2@
�
�ee � �gg

8@
A2

0f
2�t�; (4)

the Floquet Hamiltonian [Eq. (2)] can be diagonalized by a
simple rotation of �=4 in the two-level functional space of
the model. The associated time-dependent Floquet
Schrödinger equation in the adiabatic representation can
then be integrated analytically. The evolution operator over
the entire duration of the pulse ~T may be written as:

 

~T � e�i�
cos’2 �i sin’2
�i sin’2 cos’2

� �
; (5)

where ’ �
R
�
0 �eg�t�dt, � �

R
�
0�

~Ee � ~Eg �
2@!�t�	dt=2@, and Eq. (5) is in the original diabatic repre-
sentation. In the above derivations, we assume that the
pulse starts at t � 0 and ends at t � �. The excitation
probability Peg is then seen to be

 Peg � sin2 ’
2
; (6)

and complete excitation is achieved when

 ’ �
�egA

2
0�s0

4@
� �; (7)

where s0 �
R
�
0 f

2�t�dt=� depends on the shape of the pulse
envelope. Equation (7) shows that the polarization-shifted
resonant two-photon absorption depends on only one pa-
rameter A2

0�s0, which we can loosely refer to as the ‘‘pulse
area.’’ Complete excitation can be achieved by adjusting
the field strength A0, pulse duration �, and pulse envelope
s0. We note that Eqs. (5) and (7) are not new. The concept
of a � pulse is widely used in various areas [11,12], and
Trallero-Herrero et al. [21] have already discussed their
use for coherent control processes in a dipole coupled
model; the application of Eqs. (5) and (7) in controlling
molecular motions in intense laser field including polar-
ization effects is new.

In order to demonstrate the efficiency and robustness of
our formalism, we consider the complete vibrational and
rotational excitations of H2 molecules
 

H2�v�0;j�0;m�0�!H2�v�1;j�0;m�0�; (8a)

H2�v�0;j�0;m�0�!H2�v�1;j�2;m�0�; (8b)

H2�v�0;j�1;m�0�!H2�v�1;j�1;m�0�: (8c)

The H2 molecule was chosen for this study as we were
able in this case to compute, ab initio, all the necessary
molecular properties to a very high degree of accuracy
[16]. Within the electric-nuclear Born-Oppenheimer ap-
proximation [16,17], the evolution of molecule is governed

by the time-dependent nuclear Schrödinger equation

 i@
@
@t

��R; t� � fT̂nu � V�R; ��t�	g��R; t�; (9)

where T̂nu is the kinetic energy operator, and V�R;��t�	 is
the potential energy of H2 at an internuclear separation R
and in the presence of an external electric field ��t�. If the
field strength � is not very high, V�R; ��t�	 may be ap-
proximated by

 V�R;��t�	’V0�R��
�2�t�

2
����R�cos2���?�R�	; (10)

with

 ���R� � �k�R� � �?�R�; (11)

where V0�R� is the field-free potential energies, � is the
orientational angle of the H2 molecular axis with respect to
the field polarization vector, and �? and �k refer to the
perpendicular and parallel components of polarizability,
respectively. As an illustration, we plot the model poten-
tials of Eq. (10) against the ab initio computed potential
[16,17] in Fig. 1, at the orientational angle � � 0
 and an
electric field of � � 0:03 atomic units (a.u.). In the region
in which the wave function of the v � 1 vibrational level is
significant, the error never exceeds 3 cm�1. The errors
become even smaller for nonzero values of �. We may
expand the total nuclear wave function ��t� in terms of the
rovibrational eigenfunctions jii of free H2 as ��t� �P
ici�t�jii and rewrite Eq. (9) as i@ _ci�t� � Eici�t� �P
jhij��

2�t�jjicj�t�. The two-photon frequency is chosen
to be approximately resonant with the g! e transition. If
the detunings from all other close-lying states s are great
compared to the Rabi frequencies �sg and �se, we may
ignore transitions to intermediate m states and represent
the dynamics of H2 by a simple two-level model.
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FIG. 1. Comparison of the modeled potential of H2 molecules,
i.e., Eq. (10), with the ab initio calculated [16,17] potential
energies at orientational angle � � 0
 and electric field � �
0:03 a:u: The wave function for the v � 1 vibrational level is
superimposed on the plot.
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Our pulse design strategy may be stated as: (i) estimate
the pulse area according to the � condition given by
Eq. (7); (ii) shape the phase of pulse to be

 ��t� � �0 �
Z t

0
!�t0�dt0; (12)

where �0 is an initial phase; (iii) check the accuracy of the
analytical predicted pulses by performing the numerical
solution of Eq. (9) with the ab initio computed potential
[16,17] in full three dimensions and without the ‘‘two-
level’’ approximation. Equation (7) shows also that the
resonant two-photon absorption does not depend on the
details of the pulse shape. A Gaussian pulse envelope
f�t� � exp���t� �=2�2=��=4�2	 is employed throughout
this Letter, as this form is the most convenient for experi-
mental applications. All quoted yields are from numerical
integration of the TDSE.

A laser pulse designed according to the above proce-
dure, with peak strength A0 � 0:03 a:u:, transforms 98.4%
of H2�v � 0; j � 0; m � 0� into H2�v � 1; j � 0; m � 0�
for a pulse duration of 1.441 ps (see Table I). The variations
of the pulse envelope, instantaneous frequency, and pop-
ulations of H2 in states v � 0, j � 0, m � 0 and v � 1,
j � 0,m � 0 are plotted in Fig. 2. The laser frequency ��t�
is chirped down and then up to synchronize with the
polarization-shifted two-photon resonance. At the pulse
center, ��t� is �0:33 THz below the field-free two-photon
resonance. This negative frequency shift arises because the
diagonal matrix element of the polarizability tensor � of
state v � 1, j � 0,m � 0 is larger than that of state v � 0,
j � 0, m � 0. The dynamic Stark shift induced by polar-
ization effects is of the same order as the Rabi frequency
and pushes the states out of resonance. Without this fre-
quency chirping (or phase tailoring), freezing ��t� ’
63:2 THz (the field-free two-photon resonance frequency),
say, the transition probability is found to be negligibly
small and H2 remains in its initial state after the termina-
tion of the pulse. This example shows that the dynamic
Stark shift can, and must, be canceled by shaping the phase
of the pulse to achieve an efficient population transfer. In
order to avoid the competing processes due to hyperpola-
rization effects or multiphoton ionization, we have limited
the electric field strength to be less than 0.03 a.u. (see
Ref. [16]).

An important point to address is to determine how robust
the designed pulses are to variation of the optimal pulse
parameters. This is relatively easily assessed through the

use of the analytic forms given in Eqs. (6) and (7). We find
that a 5% error in the pulse amplitude A0 leads to a
decrease of 5% in the excitation probability, while an error
of 5% in the pulse length reduces the excitation probability
by 1.2%. Through a more complicated analysis, which we
will describe in a future publication, we estimate that an
error of 5 cm�1 in the frequency will lead to a 4.4%
decrease in the excitation probability. The laser pulse we
have designed to accomplish the transformation of Eq. (8a)
requires a radiation intensity of 3:16� 1017 W m�2. Such
intensities are certainly realizable using a free electron
laser [22], if the beam is focused down to a small, but
realizable, width.

We now consider the vibrational and rotational excita-
tion of H2 represented by Eqs. (8b) and (8c) with the laser
parameters given in Table I. Note that we use linearly
polarized light with the polarization vector of the light
defining the z axis. In this case, the z component of the
rotational angular momentum m is conserved, but the

TABLE I. Phase-shaped two-photon � pulse for complete
vibrational and rotational excitation of H2 molecules.

Transitions !eg (cm�1) A0 (a.u.) � (ps) Peg

Equation (8a) 4157.92 0.03 1.441 98.4%
Equation (8b) 4494.11 0.03 6.260 99.1%
Equation (8c) 4152.02 0.03 1.178 99.7%
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FIG. 2. Complete population inversion of H2 molecules be-
tween the vibrational levels v � 0; j � 0; m � 0 and v � 1; j �
0; m � 0 with the use of a phase-shaped two-photon � pulse.
The pulse envelope f�t�, instantaneous frequency ��t�, and
populations of v � 0; j � 0; m � 0 and v � 1; j � 0; m � 0
are shown in panels (a), (b), and (c), respectively. The field-
free two-photon resonance frequency is also presented by dashed
lines in (b).
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interaction matrix elements �gg and �eg and, therefore, the
details of the laser pulse depend on them quantum number.
Numerical calculations show that we can transform 99.1%
of H2�v � 0; j � 0; m � 0� into H2�v � 1; j � 2; m � 0�
in 6.260 ps and transform 99.7% of H2�v � 0; j � 1; m �
0� into H2�v � 1; j � 1; m � 0� in 1.178 ps by using
pulses with a peak strength of A0 � 0:03 a:u: The three
examples listed in Table I demonstrate that the dynamic
Stark shifts induced by strong field polarization effects can
be utilized to design shaped laser pulses that can achieve
complete vibrational and rotational excitation even in ho-
monuclear molecules.

Normal H2 at room temperature has an ortho:para ratio
(i.e., odd:even rotational levels) of 3:1, and, except under
special circumstances, this remains constant with varying
temperature. It is therefore interesting to ask if a single
laser pulse is able to excite a thermal sample of H2 from
v � 0 to v � 1. The energy separation between v � 0 and
v � 1 states is nearly the same for different fixed rotational
quantum numbers. If the detuning of the transition fre-
quency is less than the Rabi frequency, then the laser pulse
will be likely to effectively couple the levels involved. This
happens when A0 is not too small. Thus, we are able to
confirm, through the numerical solution of the TDSE, that
the pulse designed to achieve the excitation of Eq. (8c) is
also able to perform the excitation of Eq. (8a) with a
probability of 87.6%. The same pulse also excites v �
0; j � 2; m � 0! v � 1; j � 2; m � 0 with a probability
of 91.3%. Using our analytic model, we estimate that in a
thermal sample of H2 molecules a thermally averaged
transition probability of 86.2% would be obtained at a
temperature Trot � 300 K using the laser pulse designed
to accomplish the excitation of Eq. (8c) but now taking full
account of all the different rotational v; j;m states present
in the thermal ensemble.

In conclusion, we have developed an analytical scheme,
which includes polarization effects, for designing laser
pulses, involving moderately intense laser fields, to control
vibrational and rotational excitation processes. Our formal-
ism illustrates the nature of phase shaping of an optimal
pulse, i.e., cancelling the dynamic Stark shifts and main-
taining the resonance during laser-molecule interaction.
Unlike the case of dipole coupling [23], the polarizability
introduces both diagonal and off-diagonal terms into the
Hamiltonian [see Eq. (2)]. Because of this, it is not possible
to use the same strategies to cancel these Stark shifts, i.e.,
through the use of a three-level system [23].

We thank G. Duxbury and A. J. Orr-Ewing for helpful
discussions.
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