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Mechanism of Angular Momentum Exchange between Molecules and Laguerre-Gaussian Beams
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We derive the interaction Hamiltonian between a diatomic molecule and a Laguerre-Gaussian beam
under the assumption of a small spread of the center of mass wave function of the molecule in comparison
with the beam waist. Considering the dynamical variables of the center of mass, vibrational, rotational,
and electronic motion, we show that, within the electronic dipole approximation, the orbital angular
momentum of the field couples with the rotational and electronic motion. The changes in the transition
probabilities and selection rules induced by the field orbital angular momentum and the applicability of
the derived interaction mechanisms for polyatomic molecules are discussed.
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FIG. 1. Diatomic molecule in the center of mass coordinate
system: position vectors and their projection onto xOy plane are
shown for nucleus m1 and the electron me.
The interaction of a electromagnetic field with matter
has been of great interest since the early years of the
development of quantum mechanics. Processes such as
emission, absorption, and scattering of electromagnetic
field are naturally described in terms of spherical waves
[1]. The study of the interaction of matter with fields
possessing a spatial profile started with the introduction
of lasers beams whose profiles can be shaped, e.g., as
Laguerre-Gaussian (LG) or Bessel profile. Recently, the
investigation of the properties and the potential applica-
tions of beams carrying orbital angular momentum (OAM)
has been triggered by the work of Allen and co-workers
[2], who have shown that LG beams bear a well-defined
amount of OAM per unit energy. The interaction of atoms
in free space with strongly focused beams has been studied
[3] and, moreover, the challenging task of field bearing
OAM interacting with the inner structure of the atoms has
been undertaken [4–6], various schemes of OAM ex-
change between field and atom were identified [4–6],
and the entanglement between the external and internal
OAM of the atom was shown to emerge [7]. Reference [8]
gathers several published papers on both theoretical and
experimental results in which the concept of OAM plays a
crucial role.

In the present work we study the interaction between a
diatomic molecule and a field possessing OAM. The influ-
ence of the field OAM on the transition probability and the
new established selection rules are discussed. In the end,
we make remarks on the applicability of the derived inter-
action mechanisms to the polyatomic molecules.

We consider a diatomic molecule, e.g., H�2 for simplic-
ity, comprising of three particles: two nuclei of mass
(charge) m1 (�e1) and m2 (�e2), and one electron
me (�e). For simplicity, in the subsequent analysis the
spin of the particles is ignored. We shift from an arbitrary
coordinate system to the center of mass (c.m.) one and
introduce the position vectors rc:m:

i � ri �R with R �
�
P
miri�=mt and mt being the total mass of the molecule.
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For simplicity we shall drop from now on the index c.m. of
the coordinate rc:m:

i . The nuclei oscillations q are written
explicitly in the nuclear and electronic coordinates: r1 �
�r1 � v1q, re � r� �r1 � v1q, where �r1 is the equilibrium
position of the first nucleus, v1 is a constant vector of the
same orientation as r1 and of magnitude given by the
properties of the molecule, and r is the relative coordinate
of the electron to the nucleus, see Fig. 1.
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The Hamiltonian of the molecule-field system is given
by H � H0 �Hint where H0 stands for the unperturbed
Hamiltonian of the molecule and Hint for their interaction
Hamiltonian, specified later in the text. The quantum state
of our diatomic molecule is described by the product of
four wave functions j�i � jaij�ij�ijc:m:i, where jai
stands for electronic state, j�i for the vibrational, j�i for
the rotational, and jc:m:i for the c.m. wave function, with
the associated dynamical variables r, q, r̂1, and R, respec-
tively. The interaction Hamiltonian is derived in a straight-
forward manner using the Power-Zienau-Wooley (PZW)
scheme [9]:

 Hint � �
Z
d3rP �r� � E�r; t�; (1)

where P �r� is the electric polarization written in closed
integral form [9]:

 P �r� �
X
n

enrn
Z 1

0
d���r�R� �rn�: (2)

As we are interested in the interaction of the electromag-
netic field with molecule via electronic transitions, only the
contribution of the electron charge is kept in the expression
of the polarization P �r�. Next we assume an electromag-
netic field of the LG shape without off-axis radial nodes. In
the limit of the spatial small spread of c.m. wave function
the molecule experiences a local field of the type E�r?� �
E0r

jlj
? exp�il’�. A field of this form can be written in terms

of regular solid spherical harmonic functions as [10]

 E �r; t� � ClE0R
l
jlj�r?�e

i�kz�!t�; (3)

with the field normalization constant Cl �

����l�jlj�=22jlj
�������
jlj!

p
and Rm

l �r� �N l;m�r=w0�
lYml ��;��

represents the regular solid spherical harmonic function
[11]. The normalization constant of the regular solid
spherical harmonic function is given by N l;m �������������������������������������������������������������

4�=�2l� 1��l�m�!�l�m�!
p

. The beam waist w0 has
been explicitly included in the expression of Rm

l �r� for
simplicity. Replacing the expression of the electromagnetic
field into Eq. (1) and performing the integral over d3r the
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interaction Hamiltonian becomes:
 

HI;e � �Clere �E0

Z 1

0
d�Rl

jlj�R? � �re?�

� exp�i�k�Rz � �ze� �!t	� � H:c: (4)

The c.m. and electronic coordinate occurring as arguments
of the regular solid spherical harmonic in the above rela-
tion are separated using the translation property of the solid
spherical harmonics [11]

 R m
l �r1
r2��

Xl
l1�0

Xl1
m1��l1

�
�l1Rm1
l1
�r1�R

m�m1
l�l1

�r2�: (5)

In the previous works similar procedures were employed,
e.g., Babiker and co-workers [5] used a power expansion
formula to split the c.m. and ‘‘electronic-type’’ coordinates
assuming that the modulus of c.m. coordinate is much
smaller than the electronic-type one, while in the analysis
of Bessel beams interacting with atoms [6] coordinate
splitting formulas were provided by addition theorems of
Bessel functions [12]. The integral over � is performed
while writing exp�i�kze� ’ 1� i�kze and the interaction
Hamiltonian reads:

 HI;e � �Clere �E0eikRz
Xjlj
l1�0

Xl1
m1��l1

�
1

jlj � l1 � 1

�
ikze

jlj � l1 � 2

�
Rm1

l1
�R?�R

l�m1

jlj�l1
�re?� � H:c:;

(6)

where the time dependence has been dropped for simplic-
ity. In Eq. (6) the terms contributing to the electronic
interaction are the overall factor re, the term within the
round brackets and Rl�m1

jlj�l1
�re?�. Next we replace the ex-

pression of the electronic coordinates (in the c.m. reference
frame) by re � r� r1 and split the solid regular spherical
harmonic function which has the electronic coordinate as
the argument, according to Eq. (5). From the emerging
terms we keep only those which give rise to electronic
dipole interaction and HI;e becomes
 

H�d�I;e � �Cle
ikRz

�
er �E0

Xjlj
l1�0

Xl1
m1��l1

�
1

jlj � l1 � 1
�

ikr1 cos�1

jlj � l1 � 2

�
Rm1

l1
�R?�R

l�m1

jlj�l1
�r1?�

� er1 � E0

Xjlj�1

l1�0

Xl1
m1��l1

�
1

jlj � l1 � 1
�

ikr1 cos�1

jlj � l1 � 2

�
Rm1

l1
�R?�

X�1

m2��1

Rm2
1 �r?�R

l�m1�m2

jlj�l1�1 �r1?�

� erY0
1��; ’�r1 � E0

Xjlj
l1�0

Xl1
m1��l1

ik
jlj � l1 � 2

Rm1
l1
�R?�R

l�m1

jlj�l1
�r1?�

�
� H:c: (7)

In the second double sum of the above relation, the term of index l1 � jlj has been discarded because it is proportional toPjlj
m1��jlj

Rm1

jlj �R?�R
l�m1
0 �r1?� �Rl

jlj�R?�R
0
0�r1?� and, therefore, it cannot mediate electronic dipole transitions, but

only c.m. ones. Since all solid regular spherical harmonic functions occurring in relation (7) have as argument vectors
which are perpendicular to axis Oz, i.e., Rm

l �r?� � r
lYml �� � �=2; ��, we employ the properties of spherical harmonics
1-2
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as well as those of double factorial to cast relation (7) into a simpler form. For instance, considering the first double sum
occurring in the right-hand side of relation: the double sum over l1 and m1 reduces to a single sum over l1 with m1 �
sgn �l�l1, as it was shown in Ref. [10]. The products of the type ri �E0 will be replaced by ri

������������
4�=3

p P
��
1	�Y

�
1 ��i; ’i�, �

being associated with the polarization of the electric field, 	
1 � �Ex 
 iEy�=
���
2
p

. The interaction Hamiltonian will read as:

 H�d�I;e � �
16�2

3
ClereikR cos�

X
��
1

Xjlj
l1�0

	�
��2l1 � 1�!	1=2

�
R
w0

�
l1
Ysgn �l�l1
l1

�R̂�
�
S1

�
r1

w0

�
jlj�l1

Ysgn �l��jlj�l1�
jlj�l1

�r̂1�Y�1 �r̂�

� S2

�
r1

w0

�
jlj�l1

Y�1 �r̂1�Y
sgn �l��jlj�l1�1�
jlj�l1�1 �r̂1�Y

sgn �l�
1 �r̂� � S3

�
r1

w0

�
jlj�l1�1

Y�1 �r̂1�Y
sgn �l��jlj�l1�
jlj�l1

�r̂1�Y
0
1�r̂�

�
� H:c:; (8)
where
 

Sf12g �
�

1

jlj � l1 � 1
�

ikr1 cos�1

jlj � l1 � 2

�

�

��
3=4�

1=2

�
1

��2�jlj � l1� � f
2
0g	

�
1=2

(9a)

S3 �
ikw0

jlj � l1 � 2

�������������������������������������
��2�jlj � l1 � 1�	

q
; (9b)

with S2 � 0 for l1 � jlj. The interaction Hamiltonian (8)
represents the main result of our work. It allows us to
identify three mechanisms of angular momentum ex-
change between c.m., rotational, and electronic motion,
all of them interceded by electronic dipole transition:
(i) the field polarization � couples to the electronic motion
and the field orbital angular momentum is imparted be-
tween c.m. and rotational motion of molecule, (ii) the field
polarization couples to the rotational motion of molecule
and the field OAM is imparted between c.m., rotational,
and electronic motion, and (iii) the field polarization cou-
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ples to the rotational motion, the field OAM is imparted
between c.m. and rotational motion with the electronic
motion ‘‘assisting’’ the OAM exchange, while couples
neither to field polarization, nor to field OAM. The second
mechanism indicates that, contrary to previous results
[5,10], the field OAM couples in the paraxial approxima-
tion to the electronic motion even in the electronic dipole
interaction. In all above mechanisms the field polarization
couples only to the internal degrees of freedom of the
molecule, while the field OAM couples to both internal
and external degrees of freedom, a fact consistent with the
frame of paraxial approximation. Each term in the curl
brackets of relation (8) comes with a factor r1=w0. Since
r1 � w0, or equivalently kr1 � 1, the third interaction
mechanism and the terms kr1 occurring in the coeffi-
cients S1;2 will have smaller contribution to the total tran-
sition probability. In the subsequent analysis we will dis-
card these higher order terms. Now we proceed with the
evaluation of the transition matrix element Mi!f �
h�fjH

�d�
I;e j�ii:
 M i!f � �
16�2

3
Cle

X
��
1

Xjlj
l1�0

	�
��2l1 � 1�!	1=2

�
wR
w0

�
l1
�

�r1

w0

�
jlj�l1

M�l1�
c:m:M

�jlj�l1�
� �S1M

�0;jlj�l1�
� hfjrY�1 �r̂�jii

� S2M
��;jlj�l1�1�
� hfjrYsgn �l�

1 �r̂�jii	; (10)
where wR stands for the spatial spread of the c.m. wave
function and
 

M�l1�
c:m: � hc:m:fj

�
R
wR

�
l1
Ysgn �l�l1
l1

�R̂�eikRz cos�jc:m:ii (11a)

M�p�
� �

Xp
s�0

p

s

 !
�v1i=�r1�

sh�f� �rf�jqsj�i� �ri�i (11b)

M�a;b�
� � h�fjY

a
1 �r̂1�Y

sgn �l�b
b �r̂1�j�ii: (11c)

The matrix elements (11) establish the selection rules and
the probability of the electronic transitions governed by the
interaction Hamiltonian (8). One remarks that the contri-
bution of each term to the total sum occurring in Eq. (10) is
multiplied by �wR=w0�

l1 and ��r=w0�
jlj�l1 and, therefore, the

order of magnitude of these ratios is important when
deriving transition probabilities. The changes in electronic
configuration, due to the electronic transition, will induce
modification into the oscillatory motion of the nuclei.
Therefore, in the expression of the vibrational transition
matrix element (11b) the dependence on the internuclear
separation �r of the final and initial vibrational states has
been written explicitly in the case of the harmonic poten-
tial. Since the electronic transitions take place practically
at constant internuclear distance, according to Frank-
Condon principle, the electronic dipole interaction
Hamiltonian (8) includes �ri, i.e., �r1i / �ri, as parameter
and not as dynamical variable. Considering the case of
no OAM, i.e., l � 0 implying p � 0 in relation (11b),
the vibrational matrix element h�f��rf�j�i� �ri�i, possessing
analytic expression [13], can link vibrational states of the
same parity only, leading to the change in the vibrational
number of the type �� � 0;
2;
4 . . . . However, when
the field driving the electronic transition bears OAM the
vibrational, matrix element can link states of different
parities: the odd and even powers of q in formula (11b)
1-3
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will lead to �� � 
1;
3;
5 . . . and �� �
0;
2;
4 . . . , respectively. The relation (11c) describes
the angular momentum (orbital and polarization) exchange
between rotational motion and the field. In comparison
with the standard rotational selection rules of the electronic
spectroscopy where the change of angular momentum is
given by �� � 0,
1, the use of fields bearing OAM leads
to a wider range of ��, which can be easily computed
casting the rotational matrix element in terms of Clebsch-
Gordon coefficients. Therefore, when electronic spectros-
copy is performed using fields carrying OAM one will
expect a widening of the vibrational and rotational spectra.

In the previous c.m. and electronic quadrupole interac-
tion schemes [5,10] the amount of OAM transferred to the
c.m motion is fixed to jlj � 1 and the total transition
probability is of the form P �q�T / P �q�e �wR=w0�

2�jlj�1� �

P �jlj�1�
c:m: , where P stands for the c.m. and electronic

quadrupole transition probability. Taking into account
the maximum values (the highest probability transitions)
of the vibrational (11b) and rotational (11c) matrix ele-
ments one remarks that they take on values in a restricted
range and, therefore, they have almost constant con-
tribution to the total transition probability. Hence, for
the interaction scheme described by relation (10), the
total transition probability is roughly given by P �d�T /

P �d�e
Pjlj�1
l1�0 �wR=w0�

2l1��r=w0�
2�jlj�l1�P �l1�c:m:. All terms are

kept because, depending on the given parameters, only a
specific value of l1 will yield significant contribution to the
total probability.

For polyatomic molecules the nuclear coordinate r1

includes the normal oscillation modes qj in the form r1 �
�r1 �

P
jv1jqj, where the vector set v1j is constant in time

and it is determined solely by the structure of the molecule.
In this case, the oscillations of nuclei may be described in
terms of a two- or three-dimensional harmonic oscillator
denoting Q �

P
jv1jqj. In Eq. (7) the factor which con-

ains the rotational-vibrational dynamical variables, i.e., �̂r1

and qj, can be written according to relation (5) as
Rm0

l0
�r1?� �

P
l2;m2

Rm2
l2
��r1?�R

m0�m2
l0�l2

�Q1?�, with l0 and
m0 taking on the values of the corresponding lower and
upper index, and where the double sum over (l2,m2) can be
reduced to a simple sum [10]. The sums occurring in the
final expression [14] of the interaction Hamiltonian will
include terms of the form Rsgn �l0�l2

l2
�Q� �Ql2

1 Y
sgn �l0�l2
l2

�Q̂�,
which indicates that the field OAM couples to the vibra-
tional motion of nuclei as well. However, in general, the
24300
probability that such process will occur is expected to be
small due to the factor �w1=w0�

l2 where w1 stands for the
spatial spread of the oscillatory motion of the nucleus.

In conclusion, we have derived using analytical calcu-
lation the interaction Hamiltonian between a diatomic
molecule and an LG beam. Contrary to the previous re-
sults, we have shown that the electronic motion and the
electromagnetic field can exchange one unit of OAM
within electronic dipole interaction. From the structure of
the interaction Hamiltonian we have identified OAM ex-
change schemes between electromagnetic field, on one
hand, and c.m. motion, rotational, and electronic motion
of the molecules, on the other hand. When using fields
carrying OAM in electronic spectroscopy new selection
rules emerge and a widening of the vibrational and rota-
tional spectra is expected. The extension of the interacting
scenarios to the case of polyatomic molecules is discussed.
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