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We study nodes of fermionic ground state wave functions. For two dimensions and higher we prove that
spin-polarized, noninteracting fermions in a harmonic well have two nodal cells for arbitrary system size.
The result extends to noninteracting or mean-field models in other geometries and to Hartree-Fock atomic
states. Spin-unpolarized noninteracting states have multiple nodal cells; however, interactions and many-
body correlations generally relax the multiple cells to the minimal number of two. With some conditions,
this is proved for interacting two and higher dimensions harmonic fermion systems of arbitrary size using
the Bardeen-Cooper-Schrieffer variational wave function.

DOI: 10.1103/PhysRevLett.96.240402 PACS numbers: 05.30.Fk, 02.70.Ss, 03.65.Ge

A fermion node is a subspace of fermion configurations
for which a real wave function describing the fermionic
system vanishes due to the antisymmetry. In general, for N
spin-polarized fermions in d dimensions the fermion node
is a (dN � 1)-dimensional hypersurface given by an im-
plicit equation ��R� � 0, where � is the wave function
with fermion coordinates R � �r1; . . . ; rN�. The location of
the nodal manifold is of key importance for quantum
Monte Carlo (QMC) methods [1–4] since the exact node
enables us to solve the stationary Schrödinger equation
with computer time scaling as a low-order polynomial in
N. Remarkably, even rather crude Hartree-Fock (HF) or
post-HF wave function nodes, routinely used in the fixed-
node approximation QMC methods, provide� 95% of the
correlation energy in a variety of systems with hundreds of
valence electrons [1–4]. However, to reach beyond this
level of accuracy has proved to be challenging because of a
limited understanding of fermion nodes [4–9].

The exact nodes for interacting systems are known only
for a very few two-electron triplet atomic states [5,10], and
very recently, the exact node of the three-electron 4S�p3�
state has been discovered [11]. It turned out that the nodes
of these high-symmetry states have rather simple topolo-
gies and divide the configuration space into two compact
nodal cells in which the wave function is positive or
negative (‘‘plus’’ or ‘‘minus’’ cell). The two nodal cells
were found also in noninteracting spin-polarized 2D and
3D fermions with up to 200 particles using a numerical
proof [5]. The same noninteracting but spin-unpolarized
systems trivially have four nodal cells since the wave
function is a product of spin-up and spin-down determi-
nants. Interestingly, an analysis of interacting unpolarized
few-particle systems [6,9,12] has revealed that the electron
correlation can change the node topologies and number of
nodal cells. For example, the correlated wave functions of
the Be atom or N2 molecule exhibit two nodal cells while
the corresponding Hartree-Fock ones have four. It was
therefore conjectured that the bisection of the configuration
space into the two nodal cells might be a generic property
of fermionic ground states (with exceptions discussed

later). In this Letter we prove that for 2D spin-polarized
noninteracting harmonic fermions the ground state node
divides the configuration space into the minimal number of
two nodal cells for any system size. The proof method
extends to higher dimensions and carries over to other
models such as fermions on a sphere, in a periodic box,
for atomic states, etc. We show that the same holds, in
general, for interacting systems using correlated Bardeen-
Cooper-Schrieffer wave functions, and we briefly discuss
the implications.

We recall two basic properties of fermion nodes derived
by Ceperley [5]. (a) Nondegenerate ground state wave
functions satisfy the so-called tiling property, which states
that by applying all possible particle permutations to an
arbitrary nodal cell one covers the entire configuration
space. Note that this does not specify the number of nodal
cells. (b) Consider three particles i, j, k in a spin-polarized
system with wave function ��R�. We call the particles i, j,
k connected, if there exists a triple exchange ijk! jki
path that does not cross the node, i.e., j��R�j> 0 along the
exchange path. More connected particles, such as the
following six ones, can form a cluster: ••••••���� If there exists
a point Rt such that triple exchanges connect all the parti-
cles into a single cluster, then ��R� has only two nodal
cells. The tiling property implies that once the particles are
connected for Rt the same applies to any point in the cell,
as further explained in Ref. [5].

We illustrate the properties of nodes in one dimen-
sion using spin-polarized fermions in a 1D harmonic os-
cillator well. The wave function is a Slater determi-
nant ��1; . . . ;N��det��k�ri���A

Q
ie
�x2

i =2 detf1;2x; . . . ;
HN�1�x�g, where Hn�x� is a Hermite polynomial of degree
n, and A is the normalization. We omit the prefactors and
transform the Slater matrix to monomials so that the wave
function is given by the Vandermonde determinant

 �1D�1; . . . ; N� � detf1; x; x2; . . . ; xN�1g �
Y
i<j

�xj � xi�:

(1)

PRL 96, 240402 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
23 JUNE 2006

0031-9007=06=96(24)=240402(4) 240402-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.240402


The node is encountered whenever two fermions pass
through each other and the wave function has N! nodal
cells since any permutation requires at least one node
crossing. In general, the derived node is exact for other
1D models, including systems with interactions.

Now consider spin-polarized fermions in a 2D har-
monic well. The one-particle states are simply �nm �
CnmHn�x�Hm�y�, n, m � 0; 1; . . . , where Cnm includes
the Gaussian and normalization which are absorbed into
a common prefactor and omitted. The Slater matrix ele-
ments can be rearranged to monomials and we write

 �2D�1; . . . ; N� � detf1; x; y; . . . ; xnym; . . .g: (2)

The closed-shell states and the system size are labeled by
M � 1; 2; . . . , where n�m 	 M with the number of fer-
mions given by N � �M� 1��M� 2�=2.

Using induction we prove that the wave function in
Eq. (2) has only two nodal cells for any M> 0. This is
indeed true for M � 1 with three-particle wave function
�2D�1; 2; 3� � detf1; x; yg. In order to show this, it is con-
venient to extend the particle 2D coordinates by a
‘‘dummy’’ third dimension as ri � �xi; yi; 0�. Then
�2D�1; 2; 3� � z0 
 �r21 � r31�, where z0 is the unit vector
in the third dimension and rij � ri � rj. Clearly, there are
only two nodal cells since the set of vectors, z0, r21, r31, is
either left or right handed, and the node is encountered
whenever the three particles are collinear, i.e., r21 � r31 �
0. Also, the particles are connected by triple exchanges
without node crossing (e.g., rotate an equilateral triangle).

We now consider a general system with M> 1 and
arrange the particles into a Pascal-like triangle pattern on
a rectangular mesh as shown in Fig. 1. For this arrangement
the determinant can be explicitly evaluated for any M by
subsequent factorization of lines of particles [13]. Because
of the space constraints and to simplify the notation, we
illustrate the factorization on a few-particle example; the
generalization to an arbitrary size is straightforward. For
example, for M � 2 the wave function reads

 �2D�1; . . . ;6� � detf1; x;y; x2; xy;y2g

�

��������������������������

1 1 1 1 1 1
x0 x1 x0 x2 x1 x0

y0 y0 y1 y0 y1 y2

x2
0 x2

1 x2
0 x2

2 x2
1 x2

0

x0y0 x1y0 x0y1 x2y0 x1y1 x0y2

y2
0 y2

0 y2
1 y2

0 y2
1 y2

2

��������������������������

;

(3)

where the particle positions are given in Fig. 1 (our point
Rt). Clearly, all the last-row elements containing y0 can be
eliminated by adding a multiple of the third row. In a
similar way we eliminate all the matrix elements contain-
ing y0, and the determinant factorizes as

 �2D�1; . . . ; 6� �
Y2

i�1

�yi � y0�
ni�1D�1; 2; 4��2D�3; 5; 6�;

(4)

where ni is the number of particles on line y � yi. Note
that one of the factors is the 2D wave function for the
system with M reduced by one. The same factorization
structure is obtained for an arbitrary M and, obviously, it
can be applied recursively. The wave function for a general
size M is then given by
 

�2D�1; . . . ;N���
YM
i>0

�yi�y0�
ni�1D�I0��2D�1; . . . ;N=I0�

��
YM�1

l�0

�
�1D�Il�

YM
i>l

�yi�yl�ni
�
; (5)

where Il � i�l�1 ; . . . ; i�l�M�1�l denotes the labels of particles
lying on the line lwhile �1; . . . ; N=I0�means that the labels
in I0 are omitted from 1; . . . ; N. The sign depends on the
number of row exchanges and on the actual ordering of
particles. Note the translation invariance of Eq. (5).

For the induction step we assume that triple exchanges
connect all the particles in the system of size M. Let us
show that the same is true for the system of sizeM� 1 (see
Fig. 1). We first factorize out the line y � y0 as given by
Eq. (5). One of the factors is the 2D wave function for the
system of size M, which contains all additional particles
except the one with coordinates �xM�1; y0�. By the original
assumption, such a system has all the particles connected.
If instead of the horizontal line we factorize out the vertical
line (x � x0), we see that the particle at �xM�1; y0� is also
connected, thus concluding the proof.

The proof can be generalized in several ways. The same
arguments apply to three dimensions since particles can be
arranged into an appropriate 3D pattern and the wave
function evaluated by recursive factorization of planes
and lines. In fact, the result holds and the two nodal cell
property is correct for arbitrary dimension d > 1. The
proof applies also to other noninteracting or mean-field
models with polynomial entries in the Slater matrix such as

FIG. 1. Particles arranged in a Pascal-like triangle pattern. The
circles denote the particle positions and inside the circles are
particle labels.
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fermions on a sphere or in a periodic box with details given
elsewhere [14]. The proof can be modified at least for some
open-shell states as well while taking into account node
ambiguities if there are degeneracies [5,8].

The proof method can be further combined with sym-
metries for cases when a complete factorization is not
obvious, such as for multishell atomic states. For example,
spin-polarized ground states 1s2s2pn, n � 1–3 (and be-
yond), also have two nodal regions. We show this for the
6S�1s2s3p3� state in the noninteracting and HF limits.
The wave function is written as �at�1; . . . ; 5� �
detf�
1s�r�; �



2s�r�; x; y; zg, where �
1s�r� � �1s�r�=�2p�r�

and �
2s�r� � �2s�r�=�2p�r� since non-negative �2p�r� is
factorized out. The dimensionless coordinates are rescaled
by the atomic number Z and the Bohr radius a0 as r 
Zr=a0. Let us place particle 1 at the origin and particles 2–
5 on the surface of a sphere with the radius �0 equal to the
radial node of �2s�r� orbital, i.e., �2s��0� � 0. For such
configurations we obtain

 �at�1; . . . ; 5� � �
1s��0��


2s�0�r32 
 �r42 � r52�

so that any three-particle exchange from 2; 3; 4; 5 easily
avoids node crossing by appropriate positioning and rota-
tions on the sphere. The particle 1 is connected by the
exchange 123! 312 parametrized as r1�t� � �0�t; 0; 0�,
r2�t� � �0�c�t�; s�t�; 0�, and r3�t� � �0�0; 1� t; 0�, where
t � 0 (t � 1) corresponds to the beginning (end) point of
the exchange path while c�t� � cos��t=2� and s�t� �
sin��t=2�. Setting r4 � �0; 0; �0� and r5 � �0; 0;��0�,
we find that �at is proportional to

 �
2s�t�0�c�t��1� t� � �


2s��1� t��0�s�t�t > 0:

The inequality holds for the whole path 0 	 t 	 1 since
�
2s�t�0�> 0 for 0 	 t < 1 for both noninteracting and HF
cases. The proof can be further extended to more shells
such as 1s2s2p33s3p3 and 1s2s2p33s3p33d5 [14].

Spin-unpolarized systems.—Because of the product of
spin-up and -down determinants, the number of nodal cells
in noninteracting unpolarized systems is twice the number
of cells of the half-filled spin-polarized counterparts. The
proof for atomic states above then implies that the HF wave
functions for atoms with Z > 3 up to the third-row ele-
ments have four nodal cells.

Interactions in spin-polarized systems.—In general, the
shape and topology of the nodal manifold is influenced by
interactions and many-body effects. Consider the lowest
atomic quartet of S symmetry and even parity 4Se�1s2s3s�
(clearly not the lowest quartet, which is odd 4Po�1s2s2p�).
The noninteracting wave function is given by
�at�1; 2; 3� � detf�1s�r�; �2s�r�; �3s�r�g and has six nodal
cells. Since �at�1; 2; 3� depends only on distances, it is
quasi-1D and the nodes are the same as the ones given by
Eq. (1). For the interacting system the correlation is in-
cluded by adding to the wave function the lowest (and
dominant) double excitation 2s3s! 2px3px � 2py3py �
2pz3pz with a weightw. The correlated wave function then

allows for exchanges without node crossing. Define
ra�t� � �0; c�t�; s�t��, rb�t� � �c�t�; s�t�; 0�, rab�t� �
�1� g�t��rb�t� � g�t�ra�t�, rc�t� � rab�t�=jrab�t�j, and
rd�t� � rc�t� � ra�t�, where g�t� � 3t�1� t�. The ex-
change path 123! 231 is then r3�t� � r3�t�ra�t�, r2�t� �
r2�t�rc�t�, and r1�t� � r1�t�rd�t�=jrd�t�j. The radial parts
are given by r1�t� � �m � q�2t� 1�, r2�t� � �m � q�1�
t�, and r3�t� � �m � qt. �m is the mean value of the ra-
dial node of �2s and the first radial node of �3s orbitals
while 0< q< a0jwj (for the Coulomb e-e interaction w is
�� 0:05). The path is orchestrated so that in the region
where the noninteracting component vanishes the correla-
tion dominates and the particles become connected. This
illustrates two points: imposing symmetries at the mean-
field level can generate multiple cells and, in general, for
d > 1 the interactions lift this ‘‘nodal cell degeneracy’’ and
relax multiple cells to the minimal two.

Interactions in spin-unpolarized systems.—The change
from four to two nodal cells due to interactions has been
demonstrated for the first time on the Be atom [9] using the
two-configuration correlated wave function and the con-
nected cluster construction adapted to spin-unpolarized
systems. Consider a simultaneous exchange of an odd
number of pairs of spin-up particles and an odd number
of pairs of spin-down particles. For noninteracting wave
functions such simultaneous pair exchanges imply that the
node will be crossed once or multiple times. If there exists
a point Rf such that during the simultaneous spin-up and
-down pair exchanges the inequality j�j> 0 holds along
the whole path, then the wave function has only two nodal
cells.

Consider a singlet state of 2N particles in a 2D harmonic
well with particles interacting by pair potential. With some
restrictions, we show that the correlation included in the
Bardeen-Cooper-Schrieffer (BCS) pairing wave function
[7,15] given by �BCS�1; . . . ; 2N� � det���i; j�� is enough
to eliminate the noninteracting four nodal cells and fuse
them into the minimal two. Here ��i; j� � ��j; i� is a
singlet pair orbital for i " and j # fermions and we decom-
pose it into noninteracting and correlated components
��i; j� � �0�i; j� ��corr�i; j�. Using one-particle orbitals
we can write �0�i; j� �

PM
n�m�0 �nm�i��nm�j� while

�corr�i; j� �
P
n�m>Mcnm�nm�i��nm�j�, where fcnmg are

variational parameters.
We illustrate this first on a six-particle singlet, M � 1,

2N � 6. In cylindric coordinates �r; ’� we find �0�i; j� �
1� 2rirj cos’ij, where ’ij � ’i � ’j, with the Gauss-
ians and normalization omitted. �corr�i; j� is constructed
as a sum of orbitals from the next unoccupied shell (n�
m � 2) and we find �corr�i; j� � ��2�rirj cos’ij�2 � r2

i �

r2
j �, where a variational parameter � has been included. We

place the particles as in Fig. 2(a). For such a configuration
�BCS�1; . . . ; 6� � 8�rarb cos’�2�rarb cos’�2 � r2

a � r
2
b�.

The rotation of the system by � exchanges the pair of
particles for each spin, and since the wave function is
rotationally invariant, it is enough to show that it is nonzero
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for a single point, e.g., ra � rb � 1, ’ � �=4. For � � 0
the wave function vanishes since the particles lie on the
noninteracting node. However, for any interaction which
preserves the rotation invariance and gives � � 0, the BCS
wave function has only two nodal cells.

Remarkably, this can be generalized to an arbitrary size.
Assume a closed-shell singlet with the total number of
particles 2N � �M� 1��M� 2�, where N is even [for N
odd the derivations are the same after placing one particle
of each spin to the origin; see Fig. 2(a)]. We form Np pairs
of particles (Np is odd) in each spin subspace so that, say,
the pair i " , �i� 1� " has coordinates given by �ri; ’i� �
�rk; ’k�, �ri�1; ’i�1� � �rk; ’k � ��; see Fig. 2(b). Here
k � 1; . . . ; Np labels the pairs in the spin-up channel; the
spin-down particles are placed similarly and labeled by the
pair index l � Np � 1; . . . ; N. In this configuration the par-
ticles lie on the noninteracting node since det��0�i;j���
det�

P
n�m	M�nm�i��nm�j���det��nm�i��det��nm�j�� and

the rotation of the system by � crosses the nodes in both
spin channels so that both Slater determinants vanish due
to the rotation invariance. Now, if all the 2Np pair distances
and angles rk, rl, ’k, ’l are distinct, then each of the
matrices f�nm�i�g, f�nm�j�g has exactly one linearly de-
pendent row; i.e., their ranks are N � 1. This can be
verified directly for small values of M and then using
induction for any M. Consequently, the matrix ��0�i; j��
has linear dependence in one row and one column; i.e., it
has the rank of N � 1 as well. In general, adding virtual
states through �corr�i; j� provides independent rows/col-
umns (e.g., M� 1 independent rows/columns from the
first unoccupied shell) which eliminate linear dependency
so that det��0�i; j� ��corr�i; j�� is nonzero. Assuming that
the interactions do not break the rotation invariance, the
correlated BCS wave functions have only two nodal cells.
In fact, this can hold even if the invariance is broken but
one would need to show it for the entire exchange path, not
only for a single point. The proof extends to d > 2 and to
other models as well [14].

For the classes of fermion systems studied in this work
the two nodal cell property indeed appears as a generic
feature. That brings up an interesting question: When
might this property not apply? We mention just some of
the possibilities: (i) additional symmetries and/or boundary
conditions can generate additional nodal cells; (ii) nonlocal
or very strong/singular interactions can reorder the states
(e.g., an excited state becoming the ground state) or sig-
nificantly change the nodes; (iii) for systems with strong
correlations, large degeneracies at the Fermi level, or at
quantum phase transitions the properties of nodes are far
from clear and require further study. In conclusion, we
believe the presented analysis and proofs provide a signifi-
cant step forward in our understanding of topological
properties of fermionic wave functions.
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FIG. 2 (color online). (a) Positions of six 2D harmonic fermi-
ons with two particles at the origin and two pairs on circles with
radii ra, rb. (b) Positions of the spin-up particles for the M � 2,
2N � 12 particle singlet. The spin-down positions pattern is
similar except for the different radii and angles.
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