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Complex Network from Pseudoperiodic Time Series: Topology versus Dynamics
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We construct complex networks from pseudoperiodic time series, with each cycle represented by a
single node in the network. We investigate the statistical properties of these networks for various time
series and find that time series with different dynamics exhibit distinct topological structures. Specifically,
noisy periodic signals correspond to random networks, and chaotic time series generate networks that
exhibit small world and scale free features. We show that this distinction in topological structure results
from the hierarchy of unstable periodic orbits embedded in the chaotic attractor. Standard measures of
structure in complex networks can therefore be applied to distinguish different dynamic regimes in time
series. Application to human electrocardiograms shows that such statistical properties are able to differ-
entiate between the sinus rhythm cardiograms of healthy volunteers and those of coronary care patients.
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Characterizing complicated dynamics from experimen-
tal time series is a fundamental problem of continuing
interest in a wide variety of fields. Different measures
have been proposed to analyze these dynamics: for ex-
ample, Lyapunov exponent, entropies, and correlation di-
mension [1]. In this Letter, we focus on time series with
strong pseudoperiodic behavior such as the human electro-
cardiogram (ECG), human speech, laser output, and annual
sunspot numbers. These time series have aroused great
interest due to their close relation to some important physi-
ological and natural systems [2,3].

Meanwhile, the past few years have witnessed dramatic
advances in the field of complex networks [4] and complex
networks have been observed to arise naturally in a vast
range of physical phenomena. In this Letter, we show that
pseudoperiodic time series can also be investigated from
the complex network perspective: the nodes of the network
correspond directly to cycles in the time series, and net-
work connectivity is determined by the strength of tempo-
ral correlation between cycles. This representation encodes
the underlying time series dynamics in the network topol-
ogy, which may then be quantified via the usual statistical
properties of the network. We study noisy periodic and
chaotic time series within the above framework. In par-
ticular, we seek to characterize chaotic dynamics through
the basic statistical properties of the network, such as the
degree distribution, average path length, and clustering
coefficient. These statistical properties actually reflect
and quantify the hierarchy of unstable periodic orbits
embedded in the chaotic attractor which leads to small
world characteristics. Therefore, this approach provides
information that is not available from classical nonlinear
time series analysis.

The approach we present in this Letter is a transforma-
tion from time domain dynamics to complex network
topology. We find that a complex network with small world
and scale free characteristics can essentially be considered
as the dual of a time series exhibiting chaotic dynamics.
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Chaotic dynamical systems therefore have a corresponding
complex network topological signature.

We start from the construction of the network given a
pseudoperiodic time series {x;}] of n observations. First,
the pseudoperiodic time series is divided into m disjoint
cycles according to the local minimum (or maximum),
denoted as {C;, C5, ..., C,}. By considering each cycle
as a basic node of a graph, a network representation of a
given time series is achieved. Next we determine the
connection between nodes. A natural idea is that two nodes
are deemed to be connected if the phase space distance
between the corresponding cycles is less than a predeter-
mined value D. The phase space distance between C; and

C; is defined as [5] D;; = minlzo,l,..i,zj—z,-l% S IX —
Y 4ll, where X; and Y is the kth point of C; and C;
(with length /; and [;, respectively, and [; </;) in the
reconstructed phase space. Alternatively, we can also use
the linear correlation coefficient p between two cycles [5].
The correlation coefficient characterizes the similarity be-
tween cycles, since two cycles with a larger temporal
correlation will be close in phase space, these two mea-
sures are, in fact, inversely proportioned to each other and
can be used equivalently. Because the phase space recon-
struction is sometimes not reliable for noisy and nonsta-
tionary time series, we will use D for the toy models and p
(which does not need phase space reconstruction) for the
experimental time series.

After constructing the complex network from the time
series, we investigate its basic statistical properties [4]
including: (1) the degree distribution p(k)—the of the
degree of the nodes in a graph; (2) the average path length
L—the average of the minimum number of links necessary
to connect all pairs of nodes; (3) the clustering coefficient
C—the fraction of connections between the topological
neighbors of a vertex with respect to the maximum pos-
sible. We will use two typical pseudoperiodic time series
with 4000 cycles for comparison and analysis. The firstis a
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noisy periodic time series y, = sinQwown) + by, (b =
0.2836), where 7 is identical and independently distributed
noise following 7 ~ N(0, 0?). The second is from the x
component of the well-known chaotic Rossler system
givenby: x' = —(y + 2),y' = x + 0.398y, 7/ = 2 + z(x —
4). First, we will show that the complex network built from
the noisy periodic time series is a random graph. For
simplicity, the distance between cycles is defined as the
average of the distance of all pairs of corresponding points
intwo cycles, i.e., D;; = % P_[Ci(n) — C;(n)] (it will be
essentially the same if phase space distance is adopted after
embedding), where p is the period. Because the periodic
components are all the same in each cycle, we can simplify
the distance as D;; = % ©i=1 1m: = m;l. According to the
central limit theorem, D;; follows a Gaussian distribution
and we denote its as f(x). For a given threshold D, the
probability that two nodes are connected is then decided by
p= [0 f(x)dx/ [§* f(x)dx, and the resulting network
therefore can be deemed as a random graph, with the
connection probability p.

Figure 1 plots p(k) for the network extracted from the
noisy periodic time series using different thresholds. A
curve-fitting exercise indicates that these distributions are
essentially Poisson with different A’s. We examine the
clustering coefficient and average path length of the net-
work constructed with D > D, = 0.306. Here D, indicates
the threshold above which the subnetworks crosslink spon-
taneously to form a single giant network with correspond-
ing p,;. We find that the clustering coefficient C scales
linearly with p and L is less than 2 for D > D,, i.e., small
world behavior typical of a random network is exhibited.

We now look at the x component of the Rossler system.
In building the network, we use threshold D for the cycles
that are reconstructed from the time series. Figure 2 gives
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FIG. 1. Degree distribution for sinusoidal signal plus noise at
threshold (a) D = 0.3002; (b) D = 0.3190; (c) D = 0.3280,
with the mean degree being 424.2, 2004.3, 2894.3, respectively.
The original degree [0, 4000] is rescaled to [0, 20] (i.e., 20 bins)
in Poisson fitting, with A = 2.5, 10, and 15.8 in the 3 cases.

the degree distribution at D = 0.27 above D, = 0.09. In
contrast to the noisy periodic time series, there are typi-
cally multiple peaks in the degree distribution curve. We
now consider how these multiple peaks are related to the
configurations of the unstable periodic orbits (UPOs) em-
bedded in a chaotic attractor.

Unstable periodic orbits embedded in the chaotic attrac-
tor are fundamental to the understanding of the chaotic
dynamics [6,7]. It is well known that chaotic attractors are
closures of infinitely many UPOs, from which basic ergo-
dic properties such as correlation dimension and Lyapunov
exponent can be determined [8].

For a chaotic attractor, its trajectory will typically switch
or hop among different UPOs. Specifically, the trajectory
will approach an unstable periodic orbit along its stable
manifold. This approach can last for several cycles during
which the orbit remains close to the UPO. Eventually, the
orbit is ejected along the unstable manifold and proceeds
until it is captured by the stable manifold of another UPO.
A UPO of order n contains n cycles (or n loops) lying in
different locations in phase space. Therefore we will see n
clusters of cycles distributed in phase space for this
UPO-n, with the center of each cluster corresponding to
a cycle of UPO-n. The density of cycles around a central
cycle of UPO-n depends on the specific stability property
at that cycle. Because the complex network construction is
based exactly on the phase space distance between cycles,
we will have the following conclusions: (1) spatially ad-
jacent cycles in the phase space will also group into a
cluster in the network; (2) cycles in each cluster will
have approximately the same number of links to the re-
maining cycles since they are spatially adjacent. Since
cycles in one cluster usually have a different number of
links from another cluster due to the specific stability
properties and phase space location of the central cycle
associated with UPO-n, these clusters contribute different
peaks to the degree distribution, and the UPO of order n
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FIG. 2 (color online). Degree distribution for the Rdssler sys-
tem. The peak P,, denotes the accumulation of cycles near UPO
of order n.
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usually leads to n peaks; see Fig. 2. It should be noted that
although a chaotic attractor has, in principle, infinitely
many UPOs, we will not see infinitely many peaks due to
the finite length of the time series. In fact, the peaks
typically correspond to the low order UPOs known as
dominant UPOs [9].

The degree distribution obviously relies on the choice of
the threshold D. Small D will bring on many small clusters
in which cycles surrounding a certain UPO are close
enough to be covered by a D sphere, resulting in a large
number of peaks in the degree distribution. As D gradually
increases, nearby clusters merge to bigger clusters, and in
turn to even bigger ones reflected by fewer and fewer
peaks. Thus how the degree distribution changes with D
(e.g., the 2D degree distribution shown in Fig. 4) represents
the hierarchical structure of the UPOs. It quantifies the
richness of the UPOs of the chaotic attractor and serves to
characterize the chaotic dynamics in terms of the distribu-
tion and stability of the UPOs more adequately than a 1D
degree distribution.

For a complex network constructed from a chaotic time
series we find small world characteristics, i.e., the cluster-
ing coefficient obtained at D, = 0.09 is 0.6959, with L =
14.513, and at D = 0.26 (one tenth of the maximum D be-
tween cycles), C =0.7849, with L =5.532. This indicates
a strong trend to clustering in the network. Note that cycles
in phase space are spatially clustered around the UPOs.
Hence they also form clusters in the corresponding network.

We have so far only described binary networks, i.e., two
nodes in the graph are either connected or not, and the
importance of a node is reflected by its degree. Actually it
is possible to generalize this and to consider a fully con-
nected graph, where each pair of nodes are assigned a
weight w;;, and the importance of a node is measured by
the vertex strength S; = > ;c;W;;. Here we choose the
weight between each pair of nodes as the distance between
corresponding cycles in phase space. We find that for noisy
periodic time series, S has a Gaussian distribution; for
chaotic time series, S exhibits a power-law distribution.
See Fig. 3 for details.

The power-law distribution is reminiscent of scale free
networks, for which Barabasi and Albert [10] have pro-

posed a model that emphasizes growth and preferential
attachment. They show that most networks continuously
grow by the addition of new nodes, which are preferen-
tially attached to the existing nodes to a high degree.
Interestingly, we find similar phenomena in the networks
for chaotic time series. That is, by gradually increasing the
length of the time series, the resulting network can also be
considered as a growing network. Moreover, the new nodes
are found to make preferential attachment to existing nodes
of different S, i.e., for nodes with small S, the new nodes
will also attach little weight to it. We find that cycles with
small S are more stable, and therefore a new cycle is more
likely to reside near them. Cycles with small S are also
common in the “middle” of the attractor, which makes the
distance of new cycles to them generally shorter than the
distance to those outlying cycles. Hence we find that new
nodes make preferential attachment to existing nodes.

This complex network view of time series reveals inter-
esting connections and yields measures that enhances our
understanding of the chaotic dynamics. We apply this
analysis to time series of human ECG to demonstrate the
method’s practicality. We study sinus rhythm electrocar-
diogram recordings of the coronary care unit patients [11]
(patients admitted to coronary intensive care unit, mean
age 60, denoted by ““P”’) and healthy volunteers (students,
mean age 21, denoted by “H”’). Although the subjects are
different, the time series corresponds to the same physi-
ological state and is morphologically similar.

In constructing the network, we use the correlation
coefficient p to determine the connection between nodes,
which is more robust to noise and avoids phase space
reconstruction. A series of degree distribution curves are
obtained by using different threshold p’s, this is plotted in
order in Fig. 4. We call this the two-dimensional degree
distribution. We can see that the 2D degree distribution for
a coronary care unit patient demonstrates more prominent
fluctuations, in comparison to that of the healthy volunteer,
which varies rather smoothly. We quantify the level of
fluctuations by computing the variance of the normalized
derivative of the 2D degree distribution VND [VND =
var(DD'), DD'(i,j)=[DDC(i, j+1)— DDC(, j)]/DD(, j),
where DD is the 2D degree distribution, with DD(i, :)
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FIG. 3. Vertex strength distribution for (a) Sinusoidal signal plus noise. Mean S is 1276, standard deviation is 30.12. (b) x component
of Rossler system. S is rescaled from [3097, 6034] to [0, 50] (i.e., 50 bins), and the slope of the power-law fit is —0.9259.
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FIG. 4. 2D degree distributions for sinus rhythm cardiograms from (a) a healthy volunteer (H), and (b) a patient with acute risk of

sudden cardiac death (P). Both ECGs contain 976 cycles.

being the 1D degree distribution at the ith threshold]. As
expected, the VND usually assumes a much higher value
for coronary care patients than for volunteers. For the cases
shown in Fig. 4, the VND are 2.7119 and 0.4089 for the
coronary care patient and the volunteer, respectively.

This result agrees with that of Narayanan et al. [12], who
have discovered quantitative differences between healthy
and pathological groups in terms of UPOs. The authors
found that the normal cardiac system is characterized by
three to four UPOs, while various pathological conditions
contain significantly more UPOs of higher periods. Ac-
cording to our analysis, the time series with more UPOs
will lead to more peaks in the degree distribution, and thus
alarger VND. In addition, the clustering coefficient and the
average path length also show significant difference be-
tween the healthy and the coronary care patients. For the
cases shown in Fig. 4, we have Cy = 0.67, Cp = 0.98, and
Ly = 1.5589, Lp = 1.0287 at p = 0.72 (near p,). This is
because the patients have UPOs of large number and higher
order. They fill in the chaotic attractor, resulting in more
small clusters and therefore a high level of clustering,
which is reflected by a higher C and a lower L.

In fact, these statistics reflect the topological properties
associated with the number of UPOs as well as their
density in phase space. Compared with the classic metric
properties, these topological indices are independent of
coordinate-system changes and control-parameter varia-
tion. This can be of special benefit in ECG analysis, in
which the time series are always noisy and nonstationary.

In summary, we have introduced a transformation be-
tween temporal dynamics of pseudoperiodic time series
and the topological structure of a corresponding complex
network. By studying the basic statistical properties of the
network, we find useful and interesting connections: the
network built from noisy periodic time series corresponds
to a random graph, while the chaotic time series typically
exhibits small world and scale free features. We attribute

this distinction to the unstable periodic orbits that form the
skeleton of the chaotic attractor. The basic statistical prop-
erties, which reflect the number and distribution of the
unstable periodic orbits, have further been used to charac-
terize and quantify the different dynamics of the cardiac
behavior associated with UPOs. The results show that these
complex network statistics combine to be a powerful tool
in differentiating healthy from pathological groups.
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