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Multiprotein DNA Looping
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DNA looping plays a fundamental role in a wide variety of biological processes, providing the
backbone for long range interactions on DNA. Here we develop the first model for DNA looping by
an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We
uncover a switchlike transition between looped and unlooped phases and identify the key parameters that
control this transition. Our results establish the basis for the quantitative understanding of fundamental
cellular processes like DNA recombination, gene silencing, and telomere maintenance.
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FIG. 1. Schematic representation of looped DNA. Proteins
(filled circles) bind to DNA (black line) at specific sites (rec-
tangles on the line). Proteins bound at one operator, upstream
(U) or downstream (D), can interact with their counterparts at
the opposite operator if DNA forms a loop (L). In this example,
the number of binding sites per operator is N. The binary
variables �U;i and �D;i are 1 when proteins are bound to the
corresponding DNA site and are 0 otherwise. Here, only the two
proteins bound at sites i � N on the upstream (U;N) and down-
stream (D;N) operator interact with each other.
The formation of DNA loops by the binding of proteins
and protein complexes at distal DNA sites plays a funda-
mental role in many cellular processes [1–5], including
transcription [6], recombination [7], replication [4], and
telomere maintenance [8]. Disruption or alteration of these
processes often results in different developmental disor-
ders and disease states, with cancer the most prominent
example [9]. The key role of looping is to bypass the one-
dimensional nature of DNA and allow distal DNA sites to
come close to each other. In gene regulation, proteins
bound far away from the genes they regulate can be
brought to the initiation of transcription region of the
regulated genes by looping the intervening DNA [1].
Similarly, in DNA recombination, loops are formed that
bring together two DNA regions to transfer the genetic
information from one DNA region to another. Although
there are studies of double-stranded DNA looping by DNA
itself (cyclization) [10], by one protein [11,12], or by a few
proteins [1], a general understanding of the collective
properties that might emerge when multiple proteins are
involved is still lacking. The case of multiple proteins is
specially important because it is the dominant one for loops
larger than a few hundred base pairs [1,4].

In this Letter we develop the first model for DNA loop-
ing by an arbitrary number of proteins. For a small number
of proteins, this model accounts for previous thermody-
namic approaches that have been shown to reproduce in
detail available experimental data on regulation of the lac
operon and phage � [1]. For a large number of proteins, we
show here that the model exhibits properties reminiscent of
phase transitions [13], with a quasidiscontinuity in the
occupancy of the DNA sites by DNA-binding proteins.
We identify the parameters that control the transition and
show that there are two phases that can be associated with
looped and unlooped states of DNA. The density of pro-
teins on DNA is low for the unlooped state and high for the
looped state. Despite the apparent one-dimensional physi-
cal nature of the problem, looping of DNA introduces long
range interactions which make the system exhibit unex-
pected collective features.
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We consider a system with two spatially distinct DNA
regions on the same DNA double strand, referred to as
upstream (U) and downstream (D) operators (Fig. 1). Each
operator hasN binding sites for proteins that once bound to
one of them can interact with its symmetric counterpart on
the other operator if DNA is looped. The typical way to
obtain the statistical properties of the system is to identify
the representative states and their corresponding free en-
ergies and to compute the partition function [11]. This
process is usually done by tabulating the free energies
and explicitly writing down the sums of Boltzmann factors
for all the states. For large systems, however, this proce-
dure is not practical because of the exponential growth of
the potential number of states (e.g., for N � 3, there are
already 128 states).

The facts that the free energy of a state can be decom-
posed into different contributions [1] and that the states can
be labeled by discrete variables [14] allow for a
Hamiltonian description of the system. Here, we describe
the binding of proteins to DNA through binary variables
3-1 © 2006 The American Physical Society
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�U;i and �D;i, which indicate whether (�1) or not (�0) a
protein is bound to site i at the upstream or downstream
operator, respectively. Similarly, an additional binary vari-
able �L indicates whether DNA is looped (�1) or not
(�0). In terms of this set of binary variables the system
is described by the following Hamiltonian:

H �
�
c� e

XN
i�1

�U;i�D;i

�
�L � g

XN
i�1

��U;i � �D;i�; (1)

where g is the change in free energy upon binding of a
protein to a DNA site; e is the free energy of interaction
between proteins symmetrically bound at opposite opera-
tors; and c is the free energy of forming the DNA loop
[1,15]. The free energy of each of the 22N looped and 22N

unlooped states is obtained directly from the previous
Hamiltonian. The dependence of the Hamiltonian on the
concentration of binding proteins n enters, in the usual
form, through the quantity g, which can be viewed as a
chemical potential: g � go � 1

� lnn, where go denotes the
value of g at a protein concentration of 1 M and ��1 � RT
(the gas constant times the absolute temperature). These
types of Hamiltonians account for thermodynamic models
that have recently been shown to accurately describe gene
regulation in the lac operon by the lac repressor (N � 1)
and in phage � by the cI2 repressor (N � 3) [1,14]. A
systematic analysis for large systems, however, is still
missing.

In order to compute the partition function, it is conve-
nient to rewrite the Hamiltonian as the sum of quasi-
independent single-pair Hamiltonians:

H �
XN
i�1

HP;i; (2)

where

HP;i � �L�c=N � e�U;i�D;i� � g��U;i � �D;i�: (3)

The coupling of single-pair Hamiltonians is established
through the three-body terms e�U;i�D;i�L, which account
for the interactions between DNA looping and DNA-bound
proteins.

The quasi-independence property allows us to express
the partition function as

Z �
X

�L�f0;1g

YN
i�1

ZP;i; (4)

with

ZP;i �
X

�U;i�f0;1g
�D;i�f0;1g

e��HP;i

� e��c��L=N� � e���2g���c=N��e��L� � 2e���g��c�L=N��;

(5)
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which leads to

Z � �e�2g��1� eg��2�N � �2e���c=N��g��

� e���c=N��e�2g�� � e��c�=N��N: (6)

The two properties of interest are the looping probability
and the occupancy of the sites, which follow straightfor-
wardly from the previous expression of the partition func-
tion. The probability of the looped state is given by the
average value of �L, h�Li � �

1
�

@
@c lnZ. After taking the

logarithmic derivative and performing algebraic manipu-
lations, we obtain

h�Li �
1

1� XN
; (7)

with

X �
e��c=N��e���1� eg��2

1� 2e�e�g�� � e�e�2g��
: (8)

This expression for h�Li indicates that, for large N, there is
the potential for a sharp transition between two states: the
loop is always present if X < 1 and absent if X > 1. This
discontinuity can also propagate to the probability for a site
to be occupied, given by h�U=D;ii � �

1
2N�

@
@g lnZ, which is

related to the looping probability through

h�U=D;ii�
1

1�eg�
h1��Li�

1�e�e�g��

1�2e�e�g���e�e�2g��
h�Li:

(9)

Under physiological conditions, the parameter typically
used by the cell to control DNA looping is the protein
concentration. Figure 2 shows the system behavior as a
function of the protein concentration and the number of
binding sites for representative values of the parameters
[16]. The figure illustrates the presence of looped and
unlooped phases [Fig. 2(a)]. Only for intermediate concen-
trations the occupancy of the sites [Fig. 2(b)] displays a
discontinuous behavior. For concentrations in the high and
low extremes, DNA looping does not substantially affect
the binding of proteins.

The concentration ~n at which the transition happens
(X � 1) is given by

~n � e�g
o ee��e�c�=N� � 1� �

�����������������������������������������������������
ee��1� ee���e�c�=N� � 1�

q
1� e��c=N��e��

:

(10)

This equation has a positive solution if and only if e <
�c=N. If e � �c=N there is no positive solution and the
sites become occupied as the concentration increases with-
out the system ever reaching the looped state (Fig. 2).
Therefore, the interoperator protein interactions need to
exceed a strength threshold in order for DNA looping to
have the potential to be present. Remarkably, this threshold
goes to zero as the number of binding sites increases. This
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FIG. 3 (color online). Looping probability Ploop and site occu-
pancy Pbound as functions of the protein concentration n (in nM)
for coordinated changes of the free energy of looping and
number of binding sites. The values of the parameters are ��1 �
0:6 kcal=mol, go � �7:2 kcal=mol, e � �7:5 kcal=mol, c �
0:1N kcal=mol, N � 10 (top), N � 100 (middle), and N �
1000 (bottom).
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FIG. 2 (color online). Looping probability Ploop (a) and site
occupancy Pbound (b) as functions of the protein concentration n
(in nM) and the number of binding sites per operator N. The
values of the parameters are ��1 � 0:6 kcal=mol, go �
�7:2 kcal=mol, c � 30 kcal=mol, e � �5:5 kcal=mol. Black
and white colors in the 2D density plot projections of the 3D
surfaces represent probabilities 0 and 1, respectively. The thick
solid line (green online) corresponds to ~n [given by Eq. (10)] and
indicates the separation between looped and unlooped phases
(regions with concentrations above and below the line, respec-
tively). Note that there is no looped phase for N <�c=e � 5:45.
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constraint correlates with the general trend that the number
of proteins used to tie the DNA loop increases with the
length of the loop [1,4]. A longer loop typically implies a
higher free energy of looping, c, which in turn requires a
stronger interaction between proteins (a more negative e)
or a higher number of sites in order for the system to switch
to the looped state.
23810
A remarkable property inferred from the previous equa-
tions is that the looping free energy and the number of
binding sites affect the concentration at which the transi-
tion occurs only through the ratio c=N. If this ratio is kept
constant, coordinated changes in c and N modify the
sharpness of the transition but not the concentration at
which it happens (Fig. 3). The main trends observed in
the looping behavior with respect to c and N are also
observed in the occupancy of the sites [Eq. (9)], which
depends on c and N only through the looping probability.

In the case of large N, by expanding in terms of the
dimensionless parameter �c=N, the previous equation
simplifies to

~n � e�g
o

���������������������������
c�

N�e�e� � 1�

s
; (11)

which indicates that the concentration at which the tran-
sition happens decreases asymptotically like N�1=2 as the
number of binding sites increases [as demonstrated in
Fig. 2(a)]. Therefore, by increasing the number of binding
sites, the system can reach the looped phase at arbitrarily
small protein concentrations.

This asymptotic equation indicates that, for large N,
changes of e and N that keep N�e�e� � 1� constant do
not affect the transition point. Because of the strong de-
pendence of the occupancy on e for looped phases
[Eq. (9)], coordinated changes of e and N can keep the
looping properties while strongly affecting the occupancy
of the sites (Fig. 4).
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FIG. 4 (color online). Looping probability Ploop and site occu-
pancy Pbound as functions of the protein concentration n (in nM)
for coordinated changes in the interaction free energy and
number of binding sites. The values of the parameters are ��1 �
0:6 kcal=mol, go � �7:2 kcal=mol, c � 30 kcal=mol, e �
�10:96 kcal=mol� ��1 lnN, N � 100 (top), N � 1000
(middle), and N � 10000 (bottom).
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In conclusion, we have developed the first model for
DNA looping by an arbitrary number of proteins and found
that, for large number of binding sites, the system exhibits
a phase-transition-like behavior with two phases in which
DNA is either looped or unlooped. Many cellular processes
rely on the existence of a looped phase to work (e.g.,
telomere maintenance), others on the occupancies of the
sites that comes with the looped phase (e.g., gene regula-
tion), and others on the transition from one phase to
another to trigger its effects (e.g., DNA recombination).
Our results indicate that DNA looping by multiple proteins
has a high versatility to achieve different behaviors.
Explicitly, the system can reach the looped phase at arbi-
trarily small protein concentrations, the sharpness of the
transition can easily be tuned, and the system can choose
the degree to which switching to the looped state affects
occupancy of the DNA-binding sites. This versatility
underlies the many facets of DNA looping across the
spectrum of biological processes where it is at play.

The model we have proposed and its potential exten-
sions encompass a broad range of biological processes.
The case of identical binding we have discussed here in
detail closely approximates DNA looping in DNA recom-
bination and telomere maintenance [7,8]. Both of these
processes play a fundamental role in the functioning of the
cell and their deregulation is responsible for a variety of
diseases, including different types of cancer [9]. Our model
provides a backbone to build upon and to tackle more
complex situations, involving, for instance, nonidentical
23810
binding, multiple loops, and intraoperator interactions
[17]. From a methodological point of view, our approach
provides a full Hamiltonian formulation of DNA looping
that opens the applicability of the techniques of statistical
physics, both computational and analytical, to a new range
of biological problems of basic and medical importance.
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k�1

�
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�
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i;j�1

ei;j;k�U;i�D;j

�

�
XN
i�1

�gU;i�U;i � gD;i�D;i�
�
;

where the binding free energy gU=D;i depends on the site,
there are M different types of DNA loops with potentially
different free energies ck, and the interaction free energy
ei;j;k between proteins bound at opposite operators de-
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