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Reproducibility of Dynamical Heterogeneities and Metabasin Dynamics
in Glass Forming Liquids: The Influence of Structure on Dynamics
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The discovery that the propensity for particle motion in a supercooled liquid is completely determined
by the initial structure pointed to the existence of a causal link between structure and dynamics in glassy
systems. Here we demonstrate that this underlying influence of structure is only local in time, fading out
beyond the metabasin lifetime much before the � relaxation time. Thus, our results reveal the
irreproducibility of metabasin dynamics and support the scenario of a random walk on metabasins for
the long time diffusion.
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The discovery of dynamical heterogeneities in super-
cooled liquids provided a key to understanding one of the
main open problems in condensed matter: the nature of
glassy dynamics [1–3]. According to this phenomenology
[stated both experimentally [2,4,5] and by means of exten-
sive molecular simulations [3,6–9] ], relaxation proceeds
through the development of slowly relaxing regions that
grow both in size and lifetime as the temperature is lowered
in the deep supercooled regime. In turn, the configuration
space counterpart of this picture is provided by the land-
scape paradigm [3,7,8]: at low temperatures such that
equilibration within local minima is fast compared to
transitions between them, the dynamics of the system can
be described as transitions between basins of attraction of
its potential energy surface (PES), which in turn are ar-
ranged in superstructures called metabasins (MB). A MB is
a group of closely related or similar configurations which is
separated from the next MB by a long range particle
rearrangement [3,7–9]. Within this context, we have dem-
onstrated that the � relaxation is accomplished by means
of a small number of fast crossings from one MB to a
neighboring one involving the collective motion of a sig-
nificant number of particles that form a relatively compact
cluster [8].

Within this dynamic viewpoint of glassy relaxation the
structural details of the system play no explicit role.
Furthermore, the existence of a causal link between struc-
ture and dynamics that accounts for local dynamics varying
by orders of magnitude from one region of the system to
another has been regarded as an article of faith [2].
Conversely, a very interesting recent paper [10] determined
that certain aspect of dynamical heterogeneity indeed de-
pends on structure: while dynamical heterogeneities and
particle motions are not reproducible, the spatial variation
of propensities for particle motion is completely deter-
mined by the initial structural configuration. However,
the extent in time of this constraint of structure on dynam-
ics has not been assessed. In particular, in the light of the
scenario put forth in [8], it becomes central to determine
06=96(23)=237803(4) 23780
whether this influence persists at the MB dynamics. We
shall hereby demonstrate that the underlying influence of
the structure is only local in time, being relevant to the �
but not to the � relaxation, thus making MB dynamics
irreproducible. This shall provide further support to the
proposed scenario of a random walk on MBs for simple
glass formers.

We performed a series of molecular dynamics (MD)
simulations within the NVE ensemble for a paradigm
model of fragile glass former: the binary Lennard-Jones
system (LJ2) consisting of a 3D mixture of 80% A and 20%
B particles, the size of the A particles being 10% larger
than the B ones [6,8,9,11]. We carried out simulation runs
after equilibration for temperature T � 0:5, a density of
1.2 and 150 particles [8], but similar behavior was found
for other low temperatures and larger system sizes. At such
temperature (close and above the Mode Coupling tempera-
ture, Tc � 0:435) this system conforms to the usual sce-
nario of dynamical heterogeneities [6,8,9]: a small number
of particles move cooperatively a distance that is compa-
rable to the interparticle distance. These ‘‘fast moving’’ (or
‘‘mobile’’) particles are not homogeneously distributed
throughout the sample but are arranged in clusters usually
made of stringlike groups of particles [6,8,9]. The dynam-
ics is most heterogeneous at a time t� defined by the
maximum in the non-Gaussian parameter, �2�t�, �2�t� �
3hr4�t�i
5hr2�t�i2

� 1, which measures the deviation of the self-part of

the van Hove function, the probability at a given time of
finding a particle at distance r from its initial position, from
a Brownian behavior [6,9]. This quantity is located at the
end of the � and the beginning of the � relaxation (the
crossover from the caging to the diffusive regime) and
constitutes the characteristic time for dynamical heteroge-
neities. Addtionally, t� depends strongly on temperature
and grows quickly as we move towards Tc [6,9]. However,
not all the mobile particles within a t� time span contribute
decisively to the � relaxation, as we have recently dem-
onstrated [8]. Instead, the � relaxation is driven by a series
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FIG. 1. h�r2
i �t�iIC for each of the 120 A particles (t�IC � 700).

From top to bottom: t � 0, 0:5t�IC, t�IC, 3t�IC, and 9t�IC. Solid and
dotted lines indicate the corresponding mean propensity and
standard deviation (�), respectively.
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of a few MB transitions which are triggered by the occur-
rence of large compact clusters of medium-range mobile
particles called democratic motions [8]. Additionally, the
mean residence time in a MB has been estimated to be
close to t� [8].

To determine the extent in time of the influence of the
initial structure on dynamics we first briefly describe and
apply the isoconfigurational (IC) method introduced in
[10]. In it, one performs a series of equal length MD
runs from the same initial configuration, that is, always
the same structure (the same particle positions) but each
one with different initial particle momenta chosen at ran-
dom from the appropriate Boltzmann distribution. For
times when the system is dynamically heterogeneous,
each run presents mobile particles arranged in open (usu-
ally stringlike) clusters. However, the mobile particles and
corresponding clusters differ from run to run since the
mobility of the particles is not determined by the initial
configuration [10]. Propensity of a particle for motion in
the initial configuration for a fixed time interval of length t
has been defined as [10] h�r2

i iIC, (where h iIC indicates an
average over the IC and �r2

i � �ri�t � t� � ri�t � 0��2 is
the squared displacement of particle i in such time inter-
val). At low temperatures propensities are not uniform
throughout the sample and high propensity particles are
confined to certain (relatively compact) regions [10]. Thus,
while particle mobility is not reproducible from run to
run, the spatial variation in the propensity is completely
determined by the initial configuration, reflecting the in-
fluence of structure on dynamics [10]. We applied this
method to the 3D LJ2 system and followed 1200 IC
trajectories of length t�IC so that propensities are given by
h�r2

i iIC � h�ri�t
�
IC� � ri�0��2iIC. Here t�IC is the non-

Gaussian parameter averaged over all the trajectories gen-
erated within the IC. This choice is needed in order to
quantify the heterogeneous dynamics for the IC in our
small system, since the traditional definition of t� implies
an average between different single trajectories from inde-
pendent configurations or else, the use of a big system
where the result represents an average over many subsys-
tems [6,9]. Thus, were the local MB ‘‘small’’ (low mean
residence time), t�IC would be lower than the traditional
value, t�. The opposite would be valid for a ‘‘large’’ MB.
Indeed, we shall demonstrate later on that t�IC represents a
measure of the MB residence time. Figure 1 displays (top
curve) the individual particle propensities for this system.
Clearly propensities are not uniform but vary from particle
to particle and a few ones display high values (more than 3
times higher than the mean value). Additionally, as in [10]
we find that these high propensity particles are confined to
certain regions of the sample. The fact that the spatial
distribution of propensity for the time interval �0; t�IC� is
determined by the initial configuration led us to think that
what the system is actually doing for the different trajec-
tories of the IC is to explore the same MB. That is, the
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change in particle momenta generates diverging trajecto-
ries from a common origin, which are nonetheless still
confined to the same MB. Thus, at t < t�IC the main influ-
ence of the initial structure on dynamics should be the
constraint to explore the local MB (fixing the MB for the
IC ensemble).

At this point we define a time-dependent propensity for a
fixed time interval. That is, propensities have been defined
for a fixed time interval, for example, here of length t�IC and
starting at t � 0 (at the initial configuration), but we now
leave the origin of the time interval as a variable: We start
1200 IC runs at t � 0 but calculate propensities as:
h�r2

i �t�iIC � h�ri�t� t
�
IC� � ri�t��2iIC. We note that this

definition preserves the value of the mean propensity (the
value of propensity averaged over all the particles) for each
time interval. This procedure is apt to study the persistence
on the propensities of the memory of the initial configura-
tion. In Fig. 1 we plot propensities for different values of t
(note that for the top curve t � 0 we recover the original
definition). From direct inspection of the propensity values
and of the standard deviation, �, we can learn that particle
propensities clearly make uniform very quickly (they
quench and fluctuate smoothly around the mean value)
for times greater than t�IC, much before the time for the �
relaxation (estimated to be 	 7700, averaged over the IC).
This is also evident from Fig. 2 which shows an abrupt
decay of the variance of the propensity, �2. Hence, a main
conclusion emerges: the influence of structure on dynamics
is only local in time in which concerns the propensity for
motion, being thus influential for the � but not for the �
relaxation.
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FIG. 3. (a) and (b) DM for a pair of IC trajectories. (c) DDM
between the two trajectories. The gray levels of the scale are the
same for Fig. 3(a)–3(c). (d) Distribution of MB residence times
for the IC.

FIG. 2. The time evolution of the variance of the propensity,
�2 (calculated every 0:1t�IC).
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In order to rationalize this result in terms of the land-
scape approach we now study the reproducibility of MB
dynamics. Thus, we first describe briefly the distance
matrix method to study MB dynamics [8]: for each IC
trajectory we recorded 100 configurations for a total run
time close to the � relaxation and built the following
distance matrix [8,12], DM: �2�t0; t00� � 1

N

PN
i�1 jri�t

0� �

ri�t00�j2, where ri�t� is the position of particle i at time t.
Thus �2�t0; t00� gives the system averaged squared displace-
ment of a particle in the time interval that starts at t0 and
ends at t00. In other words, this distance matrix contains the
averaged squared distances between each recorded con-
figuration and all the other ones. For this study [as all
studies dealing with MBs [7,8,12] ], we must investigate
small systems, since for large systems the results origi-
nated from different subsystems would obscure the con-
clusions [7,8,12]. Thus, we used 150 particles. However,
we also found the same qualitative results for small sub-
systems immersed in a big one, thus ruling out the possi-
bility for finite size effects. Figures 3(a) and 3(b) show two
examples which display the typical behavior for runs with
T � 0:5. The gray level of the squares in the DM depicts
the distance between the corresponding configurations, the
darker the shading indicating the lower the distance be-
tween them. From the island structure of this matrix a clear
MB structure of the landscape is evident. That is, islands
are made up of closely related configurations (low �2)
which are separated from the configurations of other is-
lands by large distances. We can estimate the typical
residence time in the MBs for this T (from island sizes)
as qualitatively on the order of t�IC. Given the small system
size we expect this to be a good estimate (however, this
time scale clearly depends on system size, since for a large
system different subsystems would be undergoing MB
transition events at different times). Thus, MB transitions
(which last 1%–2% of the � relaxation) are fast events
compared to the times for the exploration of the MBs.
From the average squared displacement plot (not shown
here but represented by the first row of the DM) we can
learn that MB transitions imply jumps more than 5 times
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higher than the mean squared distance between consecu-
tively recorded structures within a MB and any pair of
structures differing by more than 0.2 clearly belong to
different MBs [8]. The study of MB transition events has
been done previously [8], revealing the decisive role of
large compact clusters of particles: ‘‘democratic’’ clusters
or d clusters. These clusters are responsible for the �
relaxation (completed after 5–10 such events) and repre-
sent potential candidates for the cooperatively relaxing
regions of Adam and Gibbs [8].

Within the IC method we define now a new DM for any
pair of IC trajectories, the distinct distance matrix (DDM),
as: �2�t0a; t00b� �

1
N

PN
i�1 jri�t

0
a� � ri�t00b�j

2, where ri�ta� is
the position of particle i at time t in trajectory a and
ri�tb� is the position of particle i at time t in trajectory b
(both trajectories within the IC). That is, we measure the
averaged squared distance between each configuration of a
given trajectory and each configuration of the other. Note
that the DM we used previously [8] was defined for a single
trajectory while now we measure distances between differ-
ent trajectories. We expect this matrix to begin with a dark
rectangle indicating the common MB explored by both
trajectories. Note that the first row and the first column
shall depict the averaged squared displacement for each
trajectory from the initial configuration [the same averaged
squared displacement plot that arises from the DMs of
Fig. 3(a) and 3(b)]. Figure 3(c) shows typical results.
From it we can note that after the exploration of the first
MB, the two trajectories enter different MBs, as can be
learnt from the large distances between them. Since struc-
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tures differing by more than 0.15 belong to different MBs,
the time a given trajectory exits the first MB can be
detected as the time when its mean squared displacement
exceeds such value. By using this, the probability calcu-
lated over the IC ensemble that after exit of the first MB
any pair of trajectories visit structures whose mean squared
distance is lower than 0.15 (a value compatible with typical
distances between structures within a given MB) gives
roughly 1%. Hence, the IC study indicates that the MB
dynamics is not reproducible, with many different MBs
accessible by different IC trajectories after exploration of
the local MB. This also means that the influence of the
initial structure is only local in time (not extending beyond
the first MB), a fact consistent with particle propensities
becoming uniform and thus loosing their heterogeneous
nature at relatively short times (	t�IC cf. Fig. 1). A random
walk scenario (spatially uncorrelated hopping processes
between MBs) has been proposed for the long time diffu-
sion of glassy systems [13] and has recently received
support from LJ2 systems [14] (the mean squared displace-
ment as a function of MB jumps follows a linear behavior
with slope 1 in a log-log plot). Our finding that the memory
of the initial structure on the propensities does not survive a
MB transition event with the concurrent irreproducibility
of MB dynamics brings new support to such a picture.

Now we justify the assumption that t�IC represents a
measure of the local MB residence time. In the IC method
each trajectory explores the MB by a different pathway and
resides in it a different amount of time before escaping it to
enter another MB. Thus, the time a single run explores a
MB might not be necessarily representative of the mean
MB residence time and a single MD run can provide a
misleading picture of the MB superstructure of the PES.
However, by using many IC trajectories a greater portion of
the MB volume can be sampled (thus, this technique
represents a powerful statistical tool to locally explore
MBs, that is, to determining MB lifetimes and sizes, escape
pathways, MB connectivity, etc.). In this sense, we calcu-
lated the residence times within the original MB for the set
of 1200 IC trajectories. As noted earlier, we used a thresh-
old of 0.15 in the mean squared distance to locate exits
from the first MB. Figure 3(d) shows the distribution of
residence times obtained. In such figure we are plotting the
fraction of configurations, f�t�, that leave the first MB at
given time intervals (we recall we recorded configurations
each 10%t�IC). The most probable residence time (given by
the maximum of the distribution) is very close to t�IC, while
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the mean residence time is around t � 1150 (	1:7t�IC).
Thus, t�IC represents a measure of the confining influence
of the local MB. This fact reveals the existence of a direct
connection between the time scale for dynamical hetero-
geneities and the MB residence time. As expected [8], we
have found that the exit of the first MB for each trajectory
is marked by the occurrence of a d cluster. The d clusters
for the different trajectories are different, but in all cases a
significant portion of the particles that comprise them are
high propensity particles. This reinforces the idea that the
regions of high propensity constitute less ‘‘jammed’’ (more
‘‘active’’) regions of the sample. Furthermore, propensity
studies are able to determine the ‘‘degree of jamming’’ of a
given structure: when one studies (for a fixed time interval
commensurable with the dynamical heterogeneity time
scale) a pair of different initial structures, each presenting
a local MB with a different value of t�IC, the initial structure
with the less confining local MB (lower t�IC) displays a
greater number of particles with high propensity, thus
revealing the existence of a larger ‘‘unjammed’’ region.
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