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Controlling Toroidal Moment by Means of an Inhomogeneous Static Field: An Ab Initio Study
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A first-principles-based approach is used to show (i) that stress-free ferroelectric nanodots under open-
circuit-like electrical boundary conditions maintain a vortex structure for their local dipoles when subject
to a transverse inhomogeneous static electric field, and, more importantly, (ii) that such a field leads to the
solution of a fundamental and technological challenge: namely, the efficient control of the direction of the
macroscopic toroidal moment. The effects responsible for such striking features are revealed and
discussed.
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The unique properties of ferroelectric and ferromag-
netic solids are widely used in many important applica-
tions. Interestingly, these properties can dramatically
change when going from bulks to nanostructures [1–3].
For instance, it has been recently discovered that zero-
dimensional (0D) ferroelectrics can have a vortex structure
for their dipoles below a critical temperature [4,5]. Such an
unusual vortex resembles the curling state exhibited by
magnetic dots above a certain size [1,6] and leads to the
activation of a macroscopic toroidal moment, which in-
volves the cross product between the ri vectors locating the
i unit cells and their local electrical dipoles pi, i.e., it is
defined as G � 1

2N

P
iri � pi, where the sum runs over the

N unit cells of the 0D system.
The possibility of switching the direction of the toroidal

moment opens exciting opportunities for nanomemory
devices [4,7], nanomotors, nanotransducers, nanoswitch-
ers, nanosensors, etc. However, a practical control of the G
toroidal moment is rather challenging, mostly due to the
fact that electric toroids directly interact with the curl of E
but not with an uniform electric field alone [8]. Moreover, a
nonvanishing curl of E can only be produced (according to
Maxwell equations) by a temporal change of the magnetic
field, �dB=dt, but the magnitude of the magnetic field
necessary to switch the electric toroidal moment is imprac-
tical. Furthermore, even if this large magnetic field was
reachable, it would disturb a volume of the sample much
larger than the nanodot size. As a result, manipulating the
toroidal moment of a single nanodot, separately from the
toroidal moment of the other dots of the sample, will
become impossible—which will thus seriously limit the
benefits of using toroids for creating the next generation of
‘‘wunderbar’’ devices. (One also needs to be able to ‘‘read’’
the chirality of the vortex of a single nanodot via, e.g., the
field produced by its dipoles [4].)

The aims of this Letter is twofold: (1) to report first-
principles-based simulations demonstrating that there is an
original and efficient way to control the electric toroidal
moment of a single nanodot, namely, by using an inhomo-
geneous static electric field; and (2) to reveal, and under-
stand, the reasons for such control.
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Here, we use the first-principles-based Monte Carlo
scheme of Ref. [9] to study a 12� 12� 12 stress-free
cubic dot that is under open-circuit electrical boundary
conditions and that is made of Pb�Zr0:4Ti0:6�O3 (PZT)—
with the surfaces being Pb-O terminated. This scheme
generalizes to 0D systems the alloy effective Hamiltonian
method proposed in Ref. [10] for bulks, by (i) substituting
the dipole-dipole interaction of infinite three-dimensional
systems by the corresponding interaction in 0D materials
[5]; and (ii) incorporating surface-induced atomic relaxa-
tions that are caused by the vacuum surrounding the dot—
with the governing parameters having been fitted to first-
principles calculations on Pb-O terminated PZT thin films
[11]. We consider a transverse inhomogeneous electric
field arising from charges located away from the studied
dot, and incorporate the interaction between the dipoles in
the dot and this field in the total energy provided by the
effective Hamiltonian method. The temperature is de-
creased by small steps, and the x, y, and z axis are chosen
along the pseudocubic �100�, �010�, and �001� directions,
respectively.

Figure 1 shows the two setups that we considered, as
well as the resulting inhomogeneous field and ground-
state dipole pattern in the dot. In practice, such setups
and inhomogeneous fields can be generated by, e.g.,
piezoforce-microscopy tip(s), nanowires, switching ferro-
electric dots, or other original methods.

Let us first discuss the setup of Fig. 1(a). The dipolar
source of the field is made of two opposite charges of 2�
10�17 C distant of 15 primitive unit cells along the x axis
from the center of the investigated dot—resulting in a field
magnitude of about 2� 108 V=m in the center of this dot.
One interesting result of Fig. 1(a) is that the studied dot
under this inhomogeneous field maintains a vortex struc-
ture at low temperature. The interactions between the di-
poles of the dot under open-circuit conditions and the
inhomogeneous field are thus not strong enough to over-
come the depolarizing-field effects responsible for the
existence of a toroidal moment in an isolated dot [4,5]
[One can, in fact, ‘‘break’’ this vortex structure by applying
fields with magnitude several times larger than the one
1-1 © 2006 The American Physical Society
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FIG. 2 (color online). (a) Temperature dependency of the
toroidal moment (squares) and polarization (dots) in the setup
shown in Fig. 1(a); and (b–d) resulting dipole pattern at 625,
300, and 1 K, respectively. The filled symbols of panel (a)
correspond to simulations in which the inhomogeneous field is
turned on while open symbols show results for an isolated dot
(that is a dot under no field, and which does not exhibit any
polarization). The long and thick arrows of panels (b–d) are
guides for the eyes to show the tendency of some dipoles to align
along some specific directions. The temperature has been re-
scaled, as in Ref. [10], to fit the experimental value of the Curie
temperature of Pb�Zr0:5Ti0:5�O3 solid solution.
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FIG. 1 (color online). Schematization of the two setups con-
sidered in this study, the resulting inhomogeneous electric fields
at the sites of the dot, and the ground-state dipole pattern.
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shown in Fig. 1(a), but such huge fields are unrealistic].
Figure 1(a) also reveals that dipoles located at the left side
of the dot, as well as those located at the bottom and top of
the dot, are following in overall the inhomogeneous field.
On the other hand, at the right side of the dot, some dipoles
are directed against this field despite the fact that the field
is rather strong there. Fighting against these strong fields
results in dipoles smaller in magnitude at the right side of
the dot than those at the left side of the dot. This leads to
the appearance of a spontaneous polarization along the�y
axis—while the toroidal moment is along the �z axis. In
other words and unlike in the isolated dot (that is in the dot
under no field) [4], toroidal moment and polarization coex-
ist in the dot under the inhomogeneous field associated
with the first setup. (This polarization is weak, namely
0:158 C=m2 to be compared with the polarization of
’1 C=m2 for bulk PZT.) As we will see later, the under-
standing of the dipole arrangement of Fig. 1(a) is the key to
allow an efficient control of the toroidal moment’s
direction.

Figure 2(a) displays the temperature dependency of G—
computed with respect to the dot center—switching on
and off the field of Fig. 1(a). This inhomogeneous field has
two rather weak-in-magnitude effects on G, namely, it
makes the toroidal moment slightly smaller at low tem-
perature and results in a high-temperature tail—which is
reminiscent of the polarization tail exhibited by ferroelec-
tric bulks subject to an homogeneous electric field. Note,
however, that the toroidal moment of the ground state in
the isolated dot can be along any of the six h001i directions
while its direction is unique when the inhomogeneous field
is turned on. Figure 2 also displays the temperature depen-
dency of the spontaneous polarization in the dot experienc-
ing the conditions associated with the first setup. Our
simulations reveal that this polarization exists at the high-
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est considered temperatures and is mostly independent of
temperature below ’ 600 K. This weak polarization is thus
solely caused by the field rather than the (temperature-
dependent) polarization instability.

The resulting change of the dipole pattern with tempera-
ture is shown in Figs. 2(b)–2(d). At high temperatures,
dipoles located at the top and bottom parts of the dot along
the y axis follow the inhomogeneous field displayed in
Fig. 1(a). They thus preferentially align in opposite direc-
tions along the x axis. A plane-by-plane decomposition of
G (not shown here) undoubtedly indicates that these anti-
phase chains are responsible for the high-temperature tail
of G seen in Fig. 2(a). Furthermore, the dipoles located
outside these chains have a slight tendency to exhibit a
component along�y. This results in the weak polarization.
Figures 2(b)–2(d) further show that these antiphase chains
elongate along the x axis with their dipoles becoming
bigger in magnitude as temperature is decreased. These
antiphase chains constitute a nucleus for G to develop by
forcing the dipoles in the other parts of the dot to change
their directions as temperature decreases, in order to gen-
erate a ‘‘full’’ vortex (which provides the lowest electro-
static energy). Some dipoles on the left and right sides of
the dot are thus now antiparallel and parallel to the y axis,
respectively, and all increase in magnitude as the tempera-
ture is decreased—which explains why G significantly
1-2
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increases when decreasing the temperature, see Fig. 2(a).
The direction of G is thus determined by the antiphase
chains of dipoles located at the top and bottom of the dot,
and resulting from following the inhomogeneous field
there. Such effect implies that rotating the source of the
inhomogeneous field should affect the direction of G. Such
possible control of the toroidal moment is indeed con-
firmed by Fig. 3, which shows the computed dependency
of the toroidal moment (and polarization) on the � angle of
the rotation about the x axis of the dipolar source in the
setup schematized in Fig. 1(a). For instance, reversing the
source of the inhomogeneous field (that is, when � is
varied from 0 to 180	) leads to G, which is now antiparallel
rather than parallel to the z axis—as well as a polarization
that is now parallel to the y axis. Figure 3 further indicates
that the toroidal moment nearly abruptly changes direction
by 90	 for � equal to 45	, 135	, 225	, and 315	, while the
(weak) polarization is a smooth function of �. Such be-
havior indicates that the six h001i minima of G are not flat
and have 90	-energy barriers that are smaller than their
180	-energy barriers.

We now wonder if some particular inhomogeneous
fields can lead to a toroidal moment that can still be
controlled but that does not coexist with any polarization.
(A polarization can hinder the benefits of having torroidal
moments for future applications because polarizations,
unlike toroidal moments, of different dots would interact
strongly [4].) The setup of Fig. 1(b) is an example of how
to achieve that, and consists in symmetrically placing two
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FIG. 3 (color online). Dependency of the Cartesian compo-
nents of the ground-state toroidal moment and polarization (in
the top inset) on the angle of rotation about the x axis of the
dipolar source associated with the setup of Fig. 1(a). For each
angle, the calculations are first performed at high temperature
and then slowly cooled down until 1 K. The bottom inset reports
the dependency of the ground-state toroidal moment for the
setup of Fig. 1(b) (for which no polarization exists) with respect
to the angle of rotation about the x axis of the two dipolar
sources.
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opposite dipolar sources at the left and right sides of the
studied dot, respectively. Note, in particular, that (i) the
fields are now equally strong at the left and right sides of
the dot; and (ii) the antiphase chains of dipoles still occur-
ring at the bottom and top y regions of the dot are now
forcing some dipoles in the right and left sides of the dots
to lie against these fields in order to create a full vortex [see
Fig. 1(b)]. The bottom inset of Fig. 3 also shows that the
toroidal moment can indeed be controlled for the setup
displayed in Fig. 1(b) by playing with the orientation of the
dipolar sources. In particular, the simultaneous reversal of
the two sources of Fig. 1(b) results in a toroidal moment
switching its direction from �z to �z (without creating
any polarization).

Let us now understand why the second setup does not
produce any polarization, and why we numerically find
(not shown here) that an homogeneous field is unable to
control the toroidal moment’s direction in the dot while
generating a nonzero polarization. For that, it is enough to
consider the linear response of the pi�Ei� dipole at the site i
with respect to the Ei field located at this site: i.e.,
pi�Ei� � pi�0� � �Ei, where pi�0� is the dipole at site i
in the isolated dot (i.e., when no field is turned on) and � is
the polarizability. It is straightforward [when summing
over all the sites i and recalling that the isolated dot has
a nonvanishing G�0� toroidal moment but a null polariza-
tion] to prove that this equation results in a P polarization
and G toroid moment such as

P / �
X

i

Ei and �G�G�0�� / �
X

i

ri � Ei; (1)

where the ri vectors locate the i unit cells with respect to
the dot center. The first equation implies that applying any
homogeneous field, as well as the nonsymmetrical inho-
mogeneous field of the first setup [see Fig. 1(a)], leads to a
nonzero polarization, unlike in the case of the more sym-
metrical inhomogeneous field of the second setup [for
which

P
iEi is null, see Fig. 1(b)]. The right part of the

second equation vanishes for an homogeneous electric field
(because

P
iri is null for the considered cubic structure),

while we numerically find that it is not the case for the
inhomogeneous fields considered here. Considering non-
linear terms in Ei for pi�Ei� leads to the same conclusions.

Moreover, the qualitative control of the direction of G by
inhomogeneous electric fields is a general feature of 0D
ferroelectrics, since we found it (not shown here) to be
independent of the surface termination (we checked that
by switching off the parameters related to surface ter-
mination) and of the shape of the dot (we confirmed that
by investigating spheres, cubes, discs, cylinders, and
asymmetrically-cut pyramids). Furthermore, additional
calculations for which we allow a 50% screening of the
surface-charges—that is a realistic electrical boundary
conditions [12], and for which we still have a vortex
structure for the isolated dot [5]—also yield such control.
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Let us now discuss differences or analogies between
magnetic and electrical vortices. First of all, the nearest-
neighbor exchange interactions are much stronger than the
dipole-dipole interactions in magnetic systems, which re-
sults in a magnetized core of the vortex [1,13] and requires
relatively large sizes of the nanodots to have a vortex
structure. In contrast, because of the large depolarizing
energy, very small ferroelectric dots [4,5] can have a vortex
structure without any polarization. These constitute strong
advantages of ferroelectric dots over magnetic dots for
increasing memory capabilities [4]—via the control of G
of single dots by, e.g., the setup of Fig. 1(b). [Notice that in
this setup, the electric vortex produces a local field, which
can be put in use for sensing and writing]. Second, the
electric toroidal moment G, being a cross product of two
vectors, is an axial vector, and, consequently, does not
break the space symmetry. It also does not break the time
symmetry—unlike the magnetic toroidal moment T �
1

2N

P
iri �mi, where mi are the local magnetic dipoles at

the N lattice sites, which breaks both the time and space
symmetry [8,14–16]. As a result, our main finding that
inhomogeneous electric fields (whose cross product with ri
does not break neither time nor space symmetry) can
control G should imply, by symmetry arguments, that
inhomogeneous magnetic fields (whose cross product
with ri breaks time and space symmetry) can switch the
direction of T. Such analogy is consistent with the ob-
served interactions of magnetic vortices with magnetic
fields in asymmetric structures [17]—and thus exhibiting
a similarity with the setup shown in Fig. 1(a).

In summary, first-principles-based simulations demon-
strate that transverse inhomogeneous electric fields can
control and switch the direction of the electric toroidal
moment. Analysis of our calculations provides an under-
standing of the effects allowing such control and, in par-
ticular, points to the importance of the inhomogeneous-
field-induced creation of antiphase chains.
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