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Strong Universality and Algebraic Scaling in Two-Dimensional Ising Spin Glasses
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At zero temperature, two-dimensional Ising spin glasses are known to fall into several universality
classes. Here we consider the scaling at low but nonzero temperatures and provide numerical evidence that
� � 0 and � � 3:5 in all cases, suggesting a unique universality class. This algebraic (as opposed to
exponential) scaling holds, in particular, for the�J model, with or without dilutions, and for the plaquette
diluted model. Such a picture, associated with an exceptional behavior at T � 0, is consistent with a real
space renormalization group approach. We also explain how the scaling of the specific heat is compatible
with the hyperscaling prediction.
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Introduction.—Critical phenomena in disordered sys-
tems remain a severe challenge. In fact, many properties
that are well established in pure systems (such as upper
critical dimension, universality, etc.) are still open to de-
bate when strong disorder is present. This is the case, in
particular, for spin glasses (SG), i.e., magnetic systems
incorporating both disorder and frustration [1].

In this Letter, we focus on two-dimensional SG because
(i) they are computationally tractable, and (ii) their zero
temperature (T � 0) universality classes [2] are well es-
tablished. For our purposes, there are two such T � 0
classes, associated with whether or not all excitation en-
ergies are multiples of a given quantum. The corresponding
spin-glass stiffness exponent � is zero in the first class (as
in the �J model) and is close to �0:28 in the second class
(as when the couplings are Gaussian random variables).
Following standard scaling arguments [3,4] to infer the fi-
nite T behavior, the thermal exponent should be given by
� � �1=�; when � � 0, formally � � 1 so that the cor-
relation length � should diverge faster than any power of
inverse temperature � � 1=T (e.g., exponential scaling).
One’s expectation is then that the two universality classes
defined at T � 0 could have direct counterparts at T > 0.

Recent numerical work [5,6] has confirmed the relation
� � �1=� in the case of Gaussian couplings; similarly, all
of the latest works [7–10] on the�J model (for which � �
0) have concluded that � � 1. We reconsider here this
issue in greater depth, comparing models with different
distributions of spin-spin couplings, using advanced
Monte Carlo and partition function solvers and applying
sophisticated extrapolations to the infinite volume limit. In
contrast with previous claims, we conclude that ��T� di-
verges with the same exponent � � 3:5 for all considered
models. Furthermore, we find that the exponent � also
seems to be the same regardless of the details of the
couplings. We are thus in a situation where the T > 0
properties fall into just one universality class, whereas
two classes arise when considering the T � 0 properties
(where the quantized nature of energies can be relevant). A
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simple interpretation of this unusual phenomenon is that, at
T � 0, one has an ‘‘additional’’ fixed point (realized only
when energies are quantized), but that this fixed point is
irrelevant for the critical properties defined just above Tc.
We have also investigated the specific heat singularities of
our models. Here we find a behavior that is asymptotically
compatible with Tc � 0 hyperscaling.

Models, computational methods, and analysis.—We
consider the 2D Edwards-Anderson model defined by the
Hamiltonian [11]

H � �
X
hxyi

Jxy�x�y; (1)

where the sum is over all the nearest neighbor pairs of a 2D
square lattice of length L with periodic boundary condi-
tions. The �x � �1 are Ising spins. We take the couplings
Jxy to be independent random variables, chosen from sev-
eral distributions in order to check their effect on the
critical behavior. In particular, we shall consider: (1) the
�J model, where Jxy � �1 with equal probability; (2) the
diluted �J model obtained from the undiluted case by
setting a fraction (1� p) of the couplings to zero; (3) the
‘‘irrational model,’’ where Jxy � �1 or �G with equal
probability for these 4 values, G being the golden mean
G � �1�

���
5
p
�=2 � �0:618; (4) a distribution with 1

2 of the
couplings equal to�1 and one-half equal to� 1

4 : We call it
the ‘‘gap 1=4’’ model.

We tackled these systems using two complementary
approaches. First, we applied cluster replica Monte Carlo
along with parallel tempering and numerous algorithmic
optimizations [8,12,13]; such an approach can provide
high quality estimates of configurational averages even
for large lattices. Second, we used exact partition function
computations [14], which give us the value of the free
energy and specific heat for individual samples at arbitrary
temperatures. In all cases, for each lattice size L, we used a
large number of disorder realizations for each of the dis-
tributions mentioned previously; typically, we used thou-
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sands of such samples. In spite of the large lattices sizes we
are able to handle, it is appropriate to use sophisticated
techniques for analyzing the effects of finite L. Starting
with a suitably defined finite-volume correlation length
��T; L� (see later) and a long-range observable O�T; L�
such as the spin-glass susceptibility �SG�T; L�, finite size
scaling (FSS) theory predicts

O�T; sL�
O�T; L�

� FO���T; L�=L; s��O���!; L�!�: (2)

Here FO is the FSS function and s > 1 is a scale factor.
Equation (2) is an excellent starting point for investigations
of the FSS behavior, as it involves only finite-volume
quantities taken from a pair of systems with sizes L and
sL at a given T. The knowledge of the scaling functions FO

(where O is, in our case, �SG) and F� (where O is �) allows
us to extract information on the critical behavior using an
infinite volume extrapolation [15,16]. This technique
works with data strictly above Tc and, hence, is well suited
to our case for which Tc � 0. In essence, it uses F� and FO

to obtain the thermodynamic limit of O using an iterative
procedure in which the pair � and O is scaled up from L!
sL! s2L! � � � ! 1 as described in Ref. [15]. Detailed
knowledge of the critical behavior can then be obtained
from appropriate fits to the extrapolated data. To show that
this relatively sophisticated technique works well in our
system, we display in Fig. 1 the FSS function F� deter-
mined from these procedures, for several of our models.
The excellent data collapse at small values of �=L (�=L <
0:45) (already noticed in Refs. [17,18]) validates the FSS
framework. Furthermore, we see that these FSS functions
are independent of the distribution of couplings Jxy; that is
precisely what should transpire if there is a single univer-
sality class in our system. The region of the excellent data
collapse increases with the size of the system, suggesting
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FIG. 1 (color online). The FSS function F�.
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strongly a single limiting FSS function. The diluted and the
gap 1=4 model are the most important pieces of evidence
on which our conclusions rest. The diluted model has
smaller finite size effects than the undiluted one: This
allows us to go to very reliable extrapolations. We have
been able to thermalize systems up to L � 64 (with
2000 samples).

The spin-glass susceptibility and the exponent �.—In
our Monte Carlo simulations, we follow two replicas from
which we can measure the local spin overlaps qx �
��1�x �

�2�
x (the superscript is the replica index). Of interest

is the two site correlation function of these overlaps; we
define, in fact, the wave-vector-dependent spin-glass sus-
ceptibility via

�SG� ~k� �
1

L2

X
~r1

X
~r2

ei ~k�� ~r2�~r1�	hq~r1
q~r2
iT
av: (3)

The usual spin-glass susceptibility is then defined through
�SG�T; L� � L2hq2i � �SG� ~k � ~0�. (We denote the ther-
mal average at temperature T by h� � �iT and the average
over the disorder realizations by 	� � �
av.)

The spin-glass susceptibility is a measure of the corre-
lation volume of our system; using the standard form for a
correlation function near a critical point

G�r� �
e�r=�

rD�2�� ; (4)

we see that in D � 2 as T ! 0 �SG should behave as
�SG � �2��. To check this, we use our infinite volume
extrapolations for both ��T� and �SG�T� and display one
versus the other in Fig. 2. It is remarkable that the data for
our models fall on the same curve, indicating, in particular,
that they all have the same exponent �, a highly surprising
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FIG. 2 (color online). Parameter-free plot of �SG�T;1� versus
��T;1� for different coupling distributions. The line is for
� � 0.
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fact if there were two universality classes. Fits of this curve
lead to values of � that are very small, between 0 and 0.1,
strongly suggestive of � � 0; note that one expects the
models with continuous couplings to have � � 0 exactly.

The correlation length and the exponent �.—The second
moment of the overlap correlation function can be identi-
fied with the square of the correlation length. In practice,
we define this length via

��T; L� �
1

2 sin�kmin=2�

�
�SG�0�

�SG�kmin�
� 1

�
1=2
; (5)

where �SG is defined in Eq. (3). Note that kmin � 2�=L is
the modulus of the smallest nonzero wave vector allowed
by periodic boundary conditions. We use our analysis
methods to extract the large L limit of ��T; L�. Having
done so for our different models, we find that their tem-
perature dependence is not so different. This is illustrated
in Fig. 3; we also see that the different models lead to rather
parallel asymptotes, suggesting that the exponent � is the
same for all of them. Analogous plots on a semilog scale do
not give evidence for an exponential scaling of �, even for
the �J model. Finally, performing power fits, we find
values of � close to 3.5. Again, this goes in the direction
of a single universality class.

The specific heat and the exponent	.—We measured the
specific heat density cv via both Monte Carlo and the exact
partition function techniques. In contrast to what was
observed for � and �, the �J model and its diluted
versions differ from the continuous models when one con-
siders the very low T behavior of cv. In the first class of
models, cv decreases fast as one approaches T � 0, while
in the second class cv looks linear in T. According to
hyperscaling, when Tc � 0, one has the relation [19]

cv�T� � T�	 with 	 � �2�: (6)

We saw that � � 3:5, so we expect 	 � �7. The deceptive
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FIG. 3 (color online). ���;1� as a function of �.
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linear behavior in the continuous model can be easily
understood. In the ground state of a continuous model,
the local field on a spin is a continuous variable with a
finite density at 0. Thus, at any low temperature, a fraction
proportional to T of the system’s spins can be thermally
activated, thereby leading to a linear dependence of cv in
T. The point is that the exponent 	 describes the non-
analytic scaling of cv, but one can also have regular parts,
namely, linear, quadratic, etc., in T. Since �	 is large, the
nonanalytic part is subdominant compared to the analytic
contributions and, thus, numerically invisible. The conclu-
sion is that the continuous models make it impossible in
practice to estimate 	. Fortunately, the situation is com-
pletely different for the �J model and its variants. There
the leading analytic contribution to cv is of the form
T�2 exp��4J=T�, because the local field on any spin is a
multiple of 2J. This is far smaller than the predicted non-
analytic term (a power of T), so we are able to use these
models to estimate 	. In Fig. 4, we show the specific heat
of the �J model versus T. In the inset, we show the
semilogarithmic plot of cv to test for exponential scaling.
The data are not compatible with an exponential scaling
(the L � 80 data are crucial to reach this conclusion),
while an asymptotic power law behavior is consistent
with the data and with the hyperscaling of Eq. (6). 2D
disordered systems with different choices of a (frustrated)
disorder behave in the same way [20], making our claim
about a strong universality even stronger.

A renormalization group justification.—In the picture
we are proposing, the thermal properties (T > 0) of 2D
SG fall into just one universality class, in contrast to the
properties defined at exactly T � 0. Furthermore, the rela-
tion � � �1=� holds if we take � from the T � 0 class of
‘‘continuous models’’ (where � is nonzero). We are thus
faced with a situation where continuous models behave as
expected, but the �J models have (i) a separate (excep-
tional) behavior at T � 0 and (ii) fall into the continuous
class when T > 0. To justify theoretically this scenario, we
appeal to a real space renormalization group (RG) frame-
work. Consider the Migdal-Kadanoff (MK) construction
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FIG. 4 (color online). Specific heat of the �J model versus T
in a log-log plot. Inset: Plot of �T ln�T2cv� versus T.
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FIG. 5 (color online). Specific heat for the �J model on MK
lattices versus T in a log-log display. G is the number of
recursions of the MK construction. Inset: The same data but
for a semilog display, which should be straight in the case of
exponential scaling.
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for spin glasses [21]. These hierarchical lattices can be
generated by recursively applying an ‘‘inflation’’ operation
whereby each edge is expanded into a cell having b parallel
branches of length s. Renormalization on these lattices can
be done exactly. For the purpose of this discussion, con-
sider the case where b � s � 3. When the distribution of
couplings is continuous, one has � � �0:278, while when
using the �J distribution one has � � 0. Indeed, there are
two fixed point distributions of the couplings: a generic
(continuous) one for which the energy scale goes to zero
(� < 0) and another one which is very special, being a sum
of delta functions on odd integers (and leading to � � 0).

Now what happens when we turn on the temperature in
this real space RG framework? At very low T, one is very
close to the critical manifold, so the renormalization will
first flow toward one of the T � 0 fixed points; the corre-
sponding fixed point determines the critical exponents of
the system. In the case of the �J model, the initial distri-
bution starts by being nearly concentrated on odd integers.
However, as we increase the lattice size, this initial distri-
bution will be less and less of that form: The iterations
renormalize the free energy F � E� TS, and, since S
fluctuates, we lose the quantization property rapidly with
size. The flow is thus toward the ‘‘continuous’’ distribution
fixed point for which � < 0. In Fig. 5, we display the
specific heat as a function of T for this �J model; as
expected, the behavior indicates a power scaling of cv
totally compatible with the value of 	 obtained from the
continuous distribution fixed point.

Summary and conclusions.—In this study of two-
dimensional SG, we examined the effect of the underlying
distribution of couplings on the critical thermodynamics.
We found several remarkable behaviors: (1) � is model
insensitive and very close to zero in all models. (2) The
divergence of � does not seem to depend on the model, and
the corresponding exponent is given by � � �1=� as long
23720
as one uses the � of the continuous models. (3) The specific
heat exponent 	 can be measured using the discrete
models, whereas in the continuous models this singular-
ity is subdominant and, thus, numerically inaccessible.
Hyperscaling is consistent with the data.

From our observations, we conclude that thermal prop-
erties of 2D SG fall into a single universality class. This is
in contrast to what happens exactly at T � 0: There, an
additional fixed point of the RG arises, allowing different
scaling in the continuous and in the �J type models.
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